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Abstract

The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical
for ensuring their safe operation and efficient mission execution, and has the potential to
significantly advance applications in logistics, monitoring, and emergency response. This
paper reviews theoretical and technical advancements in UAV battery reliability, covering
definitions and metrics, modeling approaches, state estimation, fault diagnosis, and battery
management system (BMS) technologies. Based on international standards, reliability
encompasses performance stability, environmental adaptability, and safety redundancy,
encompassing metrics such as the capacity retention rate, mean time between failures
(MTBF), and thermal runaway warning time. Modeling methods for reliability include
mathematical, data-driven, and hybrid models, which are evaluated for accuracy and
efficiency under dynamic conditions. State estimation focuses on five key battery parame-
ters and compares neural network, regression, and optimization algorithms in complex
flight scenarios. Fault diagnosis involves feature extraction, time-series modeling, and
probabilistic inference, with multimodal fusion strategies being proposed for faults like
overcharge and thermal runaway. BMS technologies include state monitoring, protection,
and optimization, and balancing strategies and the potential of intelligent algorithms are
being explored. Challenges in this field include non-unified standards, limited model
generalization, and complexity in diagnosing concurrent faults. Future research should
prioritize multi-physics-coupled modeling, AI-driven predictive techniques, and cyberse-
curity to enhance the reliability and intelligence of battery systems in order to support the
sustainable development of unmanned systems.

Keywords: unmanned aerial vehicle battery systems; reliability; fault diagnosis; state
estimation; lithium-ion battery modeling; battery management systems

1. Introduction

Amid the global transition toward low-carbon and intelligent energy systems, un-
manned aerial systems (UASs) have emerged as critical enablers for smart cities, logistics,
emergency response, and environmental monitoring [1]. The International Civil Aviation
Organization (ICAO) forecasts a 10-fold increase in the number of global civilian UAVs by
2030, with electric multirotor drones dominating the market [2]. However, as UAVs are
increasingly deployed in complex environments, the reliability of their battery systems has
become a critical concern, as it directly impacts flight safety and mission success rates and
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poses stringent demands on the safety, stability, and consistency of UAVs [3]. Developing a
systematic theoretical and engineering framework for assessing UAV battery reliability is
essential for ensuring low-altitude airspace safety and enhancing the operational efficiency
of unmanned systems.

Diverse application scenarios impose varied and stringent requirements on UAV bat-
tery reliability. For instance, logistics drones like the Amazon Prime Air drone require
their batteries to retain over 80% capacity after 500 charge–discharge cycles and withstand
mechanical shocks from 20 takeoffs and landings per hour [4]. Military drones, such as the
MQ-9 Reaper, demand batteries that support 5C high-rate discharge in extreme tempera-
tures ranging from −40 ◦C to 65 ◦C to ensure rapid mission response [5]. A 2022 commercial
UAV crash highlighted the consequences of reliability failures, where localized overheating
in a battery pack under a temperature differential exceeding 15 ◦C led to state-of-charge
(SOC) misestimation, triggering erroneous battery management system (BMS) protection
mechanisms and resulting in flight control loss. This incident underscores deficiencies in
thermal management, cell consistency, and BMS integration strategies.

International and industry standards provide fundamental guidance for battery re-
liability. For example, the United Nations Manual of Tests and Criteria (Part III, Sub-
Section 38.3) requires lithium batteries to undergo laboratory tests such as high- and low-
temperature cycling, vibration, and short circuiting prior to transportation, with a focus on
verifying their physical safety during transit. The Airworthiness Standards for Medium
Civil Unmanned Aircraft Systems (MH/T 6043-2021) [6] issued by the Civil Aviation Ad-
ministration of China mandates endurance flight tests under real operational conditions
to assess the long-term stability and reliability of batteries. Additionally, the Technical
Requirements for Electric Multirotor Unmanned Aircraft Systems for Urban Logistics Sce-
narios (T/CAAC 002—2022) [7] stipulates that batteries must possess a power redundancy
capacity of 25% to ensure emergency capabilities in complex urban environments.

These three standards exhibit significant differences in their testing environments,
validation methods, and performance criteria. For instance, UN 38.3 emphasizes individ-
ual physical tests conducted under standardized laboratory conditions; MH/T 6043-2021
focuses on a comprehensive evaluation of battery degradation during flight missions; and
T/CAAC 002—2022 introduces scenario-specific requirements for performance redundancy.
Such disparities necessitate that manufacturers develop and adapt distinct battery system
testing and certification processes depending on the target country or application scenario,
thereby complicating efforts to meet multi-regional regulatory requirements in a unified
manner [8]. Therefore, it is imperative to establish a reliability evaluation framework for
battery systems that is applicable across multiple operating conditions, performance met-
rics, and regions to support the globally consistent deployment and regulatory compliance
of unmanned aerial vehicle battery management systems.

Quantifying the reliability of UAV batteries requires a multilevel, multidimensional
metric system. At the cell level, the cycle life and capacity retention rate are core indicators.
At the system level, the availability (mean time between failures, MTBF) and mission
completion rate are more practical, with commercial UAVs often requiring a battery system
availability that exceeds 98% annually [9]. Recent advancements in artificial intelligence
have driven the development of predictive metrics, such as state-of-health (SOH) and
remaining useful life (RUL), with advanced algorithms reducing estimation errors to within
3% and enabling a shift from reactive to proactive maintenance [10]. Nevertheless, most
metrics are derived from controlled laboratory conditions, which results in researchers
struggling to address complex real-world scenarios that involve high temperatures, high
altitudes, and strong electromagnetic interference. A dynamic adaptability evaluation
framework remains a critical research gap.
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Reliability modeling underpins the state assessment of UAV battery systems. Electro-
chemical models that couple the Butler–Volmer equation with diffusion theory accurately
simulate internal reactions, which makes them suitable for extreme condition analysis.
However, their computational intensity, requiring hours for a single simulation, limits
real-time applications [11]. Equivalent circuit models (ECMs) offer millisecond-level re-
sponses, which supports embedded flight control systems, but their depiction of aging
mechanisms is limited [12]. Data-driven models that leverage superior temporal learning
capabilities achieve high accuracy in state-of-health and remaining useful life predictions,
yet rely heavily on high-quality training data [13]. Multiscale coupled models, which inte-
grate electrochemical mechanisms with data-driven approaches, enhance SOH assessment
accuracy [14]. Nonetheless, model generalization across operating conditions and online
deployment capabilities require further improvement.

The accurate estimation of battery state parameters is central to UAV battery reliability.
The use of traditional ampere-hour integration for state-of-charge estimation yields errors
up to 10%, whereas extended Kalman filtering (EKF) significantly reduces the amount
of errors when it is adapted to dynamic flight scenarios [15]. In fault diagnosis, acoustic
emission sensing can predict lithium plating faults 30 min in advance, with a sensitivity that
is five times higher than that of voltage monitoring [16]. Infrared thermography combined
with convolutional neural networks (CNNs) detects micron-scale separator defects [17].
However, concurrent fault scenarios, such as overcharge and thermal runaway, result in
feature overlap, causing misclassification rates up to 15% and necessitating multimodal
fusion algorithms to improve their diagnostic specificity [18].

The battery management system serves as a critical safeguard for UAV battery reli-
ability. Hardware-wise, active balancing circuits enhance pack capacity utilization [19].
Algorithmically, distributed BMSs with machine learning improve the SOH prediction
accuracy while preserving data privacy. Cutting-edge digital twin technology, which syn-
chronizes physical and virtual models in real time, significantly reduces fault response
times [20]. However, BMS cybersecurity is increasingly critical, with a rising number of
network attacks targeting battery systems, which underscores the need for robust intrinsic
security mechanisms.

Current research on UAV battery reliability faces multiple challenges:

1. Fragmented reliability standards with varying definitions and the lack of a uni-
fied framework;

2. Disjointed modeling approaches, with electrochemical, ECM, and data-driven models
failing to achieve effective integration, which limits their generalization;

3. Fault diagnosis being largely confined to single-fault scenarios, and struggling with
complex features of concurrent faults like overcharge and thermal runaway as a result;

4. Underdeveloped BMS research in edge computing, cybersecurity, and real-time bal-
ancing strategies that inadequately addresses highly dynamic flight demands.

This paper systematically elucidates key technologies for UAV battery reliability, with
the following contributions:

1. A comprehensive review of reliability modeling methods, including mathematical,
data-driven, and hybrid models, and an analysis of their applicability and limitations
under complex conditions;

2. An in-depth exploration of state estimation techniques for five key battery parameters
and fault diagnosis methods;

3. A systematic analysis of UAV BMS architecture and active balancing strategies, with
trends toward intelligent management being envisioned, which provides theoretical
guidance and practical references for safe and efficient UAV battery operation.
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This paper is organized as follows: Section 2 defines UAV battery reliability and
metrics. Section 3 reviews the state of reliability modeling. Section 4 discusses state
estimation, fault diagnosis, and early warning. Section 5 addresses BMS architecture and
balancing strategies. Figure 1 details the UAV battery reliability review in this paper. Finally,
Section 6 summarizes the findings and outlines future research directions.
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Figure 1. A review of UAV battery reliability.

2. Definition and Metrics of Unmanned Aerial Vehicle Battery Reliability

2.1. Definition of Drone Battery Reliability by International Organizations

The definition of reliability for unmanned aerial vehicle battery systems has evolved
with the diversification of application scenarios. The International Electrotechnical Com-
mission (IEC) standard IEC 62619 [21] indirectly supports battery system reliability through
safety requirements, focusing on performance under extreme conditions such as short
circuits, overcharging, and thermal abuse to prevent explosions or fires, which aligns
with UAV safety and stability needs [22]. The International Civil Aviation Organization
(ICAO) [23], in its Technical Specifications for Unmanned Aircraft Systems, emphasizes
dynamic reliability in high-altitude and vibrational environments, which requires a sta-
ble performance output under complex flight conditions [24]. The Institute of Electrical
and Electronics Engineers (IEEE) explores mission reliability, modeling the relationship
between battery failure rates and mission success rates to ensure high completion rates.
These varied definitions reflect multidimensional evaluations of UAV battery performance
across standards.

Differences in safety redundancy requirements significantly influence UAV battery
design specifications. IEC 62619 mandates multiple protection mechanisms, such as over-
charging and overheating safeguards, to address sudden failures, reflecting a conservative
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design approach. In contrast, IEEE 1625 [25] favors risk-based, system-level safety designs
without mandating specific protection levels, offering greater flexibility. These differences
manifest in market applications: European markets typically adopt IEC’s stringent safety
standards, while U.S. markets prefer IEEE’s adaptable frameworks. Additionally, China’s
GB/T 34131-2023 Technical [26] Requirements for Civil UAV Batteries impose strict criteria
for cycle life and fast charging, requiring batteries to maintain a specified capacity after
a defined number of cycles and complete rapid charging within set times, and addresses
reliability demands for high-frequency mission scenarios.

The reliability of unmanned aerial vehicle battery systems is defined as the system’s
ability to maintain the expected performance levels throughout its lifecycle under specified
environmental conditions and flight scenarios. This comprehensive concept encompasses
five core dimensions. Additionally, a six-dimensional radar chart that integrates emerging
trends in reliability metrics for evaluating UAV battery reliability is presented in Figure 2.

• Performance reliability: The battery must achieve a cycle life of at least 500 charge–
discharge cycles while maintaining the designed capacity, retaining ≥80% of its initial
capacity after 500 cycles. Power output fluctuations should be constrained within
±5% under rated conditions, and the calendar life should exceed 5 years;

• Operational reliability: The battery must exhibit environmental adaptability, operating
effectively within a temperature range from −20 ◦C to 50 ◦C and from 20% to 95%
relative humidity (non-condensing). For its dynamic response, it should maintain
≥90% power output during load transitions from 2C to 5C discharge. Continuous
operation is reflected by a single-flight availability of ≥95% and a mean time between
failures (MTBF) of ≥5000 h;

• Safety reliability: The system must incorporate fault tolerance and ensure that single-
cell failures do not compromise the system’s overall operation through an N + 1
redundancy design. For thermal runaway protection, a warning time of ≥5 min and a
propagation suppression time of ≥15 min are required. Electromagnetic interference
resistance must ensure no performance degradation under a 10 kV/m field strength;

• Economic reliability: The lifecycle cost per flight should be ≤0.05 USD/Wh, and the
maintenance costs should not exceed 10% of the total costs. The recycling rate should
reach ≥80%;

• System-level reliability: The battery system must comply with communication pro-
tocols such as ISO 21895 [27] to ensure interoperability. Mission support requires a
power response time of ≤100 ms to meet rapid takeoff and landing demands. Module
consistency means a voltage deviation of ≤50 mV and a temperature difference of
≤3 ◦C.

In summary, the reliability of unmanned aerial vehicle battery systems is defined as
the system’s ability to consistently maintain the designed performance, safe operation, and
economic viability throughout its lifecycle under specified environmental conditions and
flight scenarios. This multifaceted concept encompasses five core dimensions: performance
reliability, covering capacity, power, and lifespan metrics; operational reliability, which
includes environmental adaptability, dynamic response, and availability; safety reliability,
which includes redundancy design, thermal runaway protection, and electromagnetic com-
patibility; economic reliability, which is reflected in the flight costs, maintenance expenses,
and recycling efficiency; and system-level reliability, which involves interoperability, mis-
sion support, and module consistency. Furthermore, reliability distinctions include inherent
reliability, operational reliability, and environmental reliability, extending to emerging as-
pects such as cybersecurity, the interpretability of state prediction models, and sustainability.
Together, these form an integrated assurance system that balances performance, safety, and
economic considerations.
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Figure 2. Six-dimensional radar chart for unmanned aerial vehicle battery reliability evaluation.

2.2. Indicators of UAV Battery Reliability

To comprehensively evaluate the stability and availability of unmanned aerial vehicle
battery systems across diverse flight scenarios, the multidimensional reliability metrics
framework is essential. As shown in Tables 1–6, this framework encompasses five core
dimensions—performance reliability, operational reliability, safety reliability, economic
reliability, and system-level reliability—while extending to emerging requirements such as
cybersecurity, artificial intelligence interpretability, and sustainability. The performance
dimension reflects the battery’s sustained capabilities in terms of its capacity, power out-
put, cycle life, and calendar life. The operational dimension addresses its adaptability to
external conditions, including temperature, humidity, high altitudes, and vibration, as
well as its stability in high-frequency missions. The safety dimension emphasizes fault
tolerance, thermal runaway protection, and electromagnetic compatibility to ensure safe
operation under extreme conditions. The economic dimension evaluates the lifecycle
cost-effectiveness through metrics such as the per-flight cost, maintenance expenses, and
material recycling rate. The system-level dimension focuses on inter-module communi-
cation compatibility, mission support capabilities, and cell consistency to ensure efficient
system coordination. This comprehensive metrics system aligns with standards such as
IEC 62619, IEEE P2836 [28], and China’s GB/T 34131, providing quantitative benchmarks
and decision-making support for UAV battery design optimization, reliability assessment,
and lifecycle management.
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Table 1. Performance reliability indicators.

Metric Definition Expression Description

Capacity Retention Rate
Ratio of remaining capacity

to initial capacity after
specified cycles

≥80% after 500 cycles
Measures performance
degradation, ensuring
endurance capability

Power Output Stability
Range of power output

fluctuations under varying
discharge rates

Fluctuations ≤ ±5%
Ensures stable power delivery

under dynamic loads

Cycle Life
Number of cycles

completed before capacity
degrades to 80%

Ncycle ≥ 500 Reflects battery durability

Calendar Life
Time until battery reaches

performance threshold
under specified conditions

Lcalendar ≥ 5 years
Accounts for aging in

non-flight states, suitable for
long-term deployed UAVs

Table 2. Operational Reliability Indicators.

Metric Definition Expression Description

Environmental
Adaptability

Ability to operate normally
under extreme

temperature, humidity, and
high-altitude conditions

Twork = [−20 ◦C, 50 ◦C]
Ensures stable operation in di-
verse environments, compliant

with ICAO standards

Dynamic Response
Capability

Power output retention
during sudden
load changes

Non-condensing ≥90%
power output during

load transitions

Addresses highly dynamic
tasks like takeoff and

acceleration, preventing
power shortages

Single-Flight Availability
Probability of normal

operation during a single
flight mission

≥95% availability
per flight

Measures mission reliability,
critical for commercial UAVs

requiring high availability

Mean Time
Between Failures

Average time between
consecutive failures MTBF = Ttotal

N f ailure

Reflects long-term operational
stability, used for maintenance

scheduling evaluation

Table 3. Safety Reliability Indicators.

Metric Definition Expression Description

Redundancy Design
Capability

Single-point failures have
no impact on

system operation
N + 1 Structural

Module failures do not affect
overall system operation

Thermal Runaway Early
Warning Time

Time interval from
abnormal temperature rise

to alarm activation
≥10 min

Allows the system to initiate
cooling or shutdown measures

Thermal Runaway Propa-
gation Suppression Time

Time required to control
fire or thermal propagation

≥30 min
Provides a window for

emergency response measures

Electromagnetic
Compatibility

Performance remains unaf-
fected under electromag-

netic interference

No performance
degradation with

10 KV/m

Ensures strong
anti-interference capability,

enabling operation in complex
electromagnetic environments
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Table 4. Economic Reliability Indicators.

Metric Definition Expression Description

Cost per Flight
Average energy cost per
flight over the battery’s

full lifecycle

Cost per flight
≤ 0.05 USD/Wh

Reflects economic efficiency
and helps optimize logistics

drone operational costs

Maintenance Cost Ratio
Proportion of maintenance

costs to the total
system cost

Rm = Cm
Ctotal

× 100%
Indicates maintenance burden;

lower ratios are preferred

Recycling Rate

Proportion of battery
materials that can be

recycled and reused after
decommissioning

Rr =
Mr

Mtotal
× 100%

Highlights resource recovery
efficiency and environmen-

tal sustainability

Table 5. System Reliability Indicators.

Metric Definition Expression Description

Communication
Interoperability

Compatibility of battery
system communication

with other UAV subsystems

Compliance with ISO 21895
communication protocol

Ensures seamless integration
with flight control and

charging systems, enhancing
overall system efficiency

Mission Support
Capability

Battery’s ability to provide
dynamic power output for

mission tasks
Power response time ≤ 100 ms

Satisfies the requirements of
highly dynamic tasks such as
frequent takeoffs and landings

Module Consistency

Consistency of key
parameters (e.g., voltage,

temperature) among battery
cells within a pack

Voltage difference ≤ 50 mv,
Temperature difference ≤ 3 ◦C

Improves overall battery pack
performance and extends

service life

Table 6. Emerging Trends in Reliability Indicators.

Metric Definition Expression Description

Cybersecurity
System’s ability to
resist cyberattacks

Compliance with IEC
62443 [29]

Enhances the battery
management system’s (BMS)

resilience against DDoS attacks
and ensures the security of

mission-critical data
Explainability of Artifi-

cial Intelligence
Transparency of fault

prediction models
Application of SHAP,

LIME, etc.
Improves algorithm controlla-

bility and trustworthiness

Carbon Footprint
Carbon emissions

generated per unit of
energy produced

≤ 50 kgCO2/KWh

Reduces emissions during
production, usage, and

recycling processes,
supporting green

aviation initiatives

3. Reliability Modeling Methods for UAV Batteries

As UAV batteries are the core component responsible for ensuring endurance and
flight safety, their performance, lifespan, and safety status require accurate prediction
and control, which depend critically on appropriate modeling and simulation. Battery
modeling aims to describe dynamic processes such as electrochemical reactions, thermal
behavior, and degradation mechanisms through mathematical or physical representations.
With the rapid expansion of UAV applications in fields such as logistics, surveying, and
emergency response, battery models are required to simultaneously achieve high accuracy,
low computational complexity, and scalability so that they can adapt to dynamic flight
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scenarios. As illustrated in Figure 3, which is based on modeling principles and levels
of fidelity, the mainstream battery modeling approaches can be broadly classified into
three categories: mathematical models (white-box models), data-driven models (black-box
models), and hybrid models (grey-box models).

Figure 3. Comparison of drone battery reliability modeling methods.

3.1. Mathematical Models

Mathematical models are constructed based on the multi-physical processes that
occur within UAV energy storage batteries, including electrochemical reactions, thermal
conduction, mechanical stress, and aging mechanisms. These models aim to accurately
capture the intrinsic behavior of batteries during UAV operations. Mathematical models
offer strong interpretability and predictive capability, playing a critical role in battery
structural design, flight performance evaluation, safety analysis, and lifespan prediction.
According to modeling approaches and levels of data dependence, battery models can be
classified into three main types:

• Mathematical models, such as the Newman electrochemical model, equivalent circuit
models, and thermal models, which are based on physical mechanisms and emphasize
mechanistic interpretability;

• Data-driven models, which rely on extensive operational data (e.g., voltage, cur-
rent, and temperature) collected during flight missions and are constructed using
machine learning or statistical methods, which makes them suitable for complex,
nonlinear scenarios;
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• Hybrid models, which integrate the mechanistic foundation of mathematical models
with the adaptability of data-driven models and thereby balance interpretability and
predictive accuracy.

These models can be employed individually or coupled together to form multi-physics
or multi-method frameworks, which enables their adaptation to varying precision and com-
putational complexity requirements for UAV applications across different flight missions.

3.1.1. Electrochemical Models

1. Pseudo-Two-Dimensional Model

For unmanned aerial vehicle systems that operate under highly dynamic flight con-
ditions, the pseudo-two-dimensional (P2D) model enables the detailed simulation of in-
ternal electrochemical processes within the battery and thereby provides a theoretical
foundation for optimizing battery performance under high-rate discharge and frequent
load fluctuations.

The pseudo-two-dimensional model of lithium-ion batteries, as illustrated in Figure 4,
was proposed by Newman, M. Doyle, and co-workers. This model describes key physical
and chemical processes, including lithium-ion diffusion in the electrolyte, electrode reaction
kinetics, ohmic behavior, charge conservation, and mass conservation [30].

Cathode Separator Anode

Cathode

Collector

Anode

Collector

Electrolyter r

 

Figure 4. Pseudo-two-dimensional (P2D) model.

The P2D model is capable of simultaneously describing both the internal and exter-
nal characteristics of lithium-ion batteries. M. Rosas et al. developed a P2D model for
lithium manganese oxide (LMO) batteries and validated it under dynamic conditions [31].
Zhang Q. et al. employed the P2D model to simulate the charge distribution in lithium
cobalt oxide (LCO) electrodes and introduced a semi-empirical treatment of the symmetry
factor in the reaction kinetics equations, demonstrating the model’s applicability for the
electrode analysis of LCO materials [32]. T. T. Sara et al. proposed a model based on the
particle radii of both the anode and cathode, and established a P2D model for 18650-format
lithium iron phosphate (LFP) batteries [33]. The parameters in the P2D model have clear
physical significance, allowing the model to capture the internal states of lithium-ion bat-
teries during charge and discharge processes. Therefore, the P2D model is particularly
well-suited for the micro-scale investigation of lithium-ion battery behavior.

In unmanned aerial vehicle systems, the pseudo-two-dimensional model can be em-
ployed to thoroughly analyze the impacts of dynamic variations on internal battery reac-
tions, such as lithium-ion concentration gradients, intensified polarization, and thermal
accumulation. By simulating the electrochemical behavior of batteries during acceleration,
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hovering, and prolonged flight, the P2D model facilitates the optimization of thermal
management and state-of-health assessment, thereby providing theoretical support for the
enhancement of UAV endurance and flight safety.

2. SP Model

The P2D model consists of partial differential equations and nonlinear parameters,
and results in a high number of iterations, lengthy computation times, and numerous
parameters. Due to differences in computational efficiency and parameter identification,
the application of the P2D model is limited. As a result, many researchers have been
continuously exploring reasonable and effective simplification methods for the P2D model,
among which the most widely used is the single particle (SP) model. The SP model was
proposed by B. S. Haran et al. [34]. In this model, it is assumed that the lithium-ion
concentration in the liquid phase is uniform throughout the battery, and the electromotive
force of the solid phase is uniform within the electrode. The SP model neglects the non-
uniform distribution of the lithium-ion diffusion potential in the liquid phase and, therefore,
the entire electrode can be represented by a single active particle.

Based on the P2D model, the SP model introduces the following assumptions, which
significantly simplify the computational process of the model.



















jn ≈
I(t)

anFln A0

jp ≈
I(t)

anFlp A0

(1)

Compared to the P2D model, the SP model has fewer equations, fewer parameters,
and higher computational efficiency. Therefore, it is an electrochemical model that is
applicable to real-time systems and has been employed by some researchers for the real-
time monitoring of lithium-ion concentrations in lithium-ion batteries [35].

To meet the real-time control requirements of unmanned aerial vehicle systems, the
single particle model is particularly well-suited for embedded battery management systems
due to its simplified structure and computational efficiency. By employing a reduced-order
particle-based representation, the SP model enables the rapid prediction of batteries’ state
of charge and voltage variations during flight, and thereby provides low-latency support
for energy scheduling and remaining range estimation during mission execution.

3. Extended SP Model

Due to its excessive simplification of electrochemical processes, the SP model suffers
from reduced accuracy and is only suitable for low-rate charge and discharge conditions.
To address the limitations of the SP model, many researchers have proposed extended SP
models. To address the challenges of high-rate charge–discharge and rapid operational
transitions in unmanned aerial vehicles (UAVs), the extended single particle (SP) model
was developed, which enhances the SP model’s capability to capture battery dynamic
behavior by incorporating electrolyte-phase diffusion and heterogeneous reactions. This
improvement makes the model more suitable for meeting the demands of flight safety
and performance optimization. Luo W, Lyu C, and others introduced the effects of liquid-
phase diffusion and heterogeneous reaction distribution into the SP model, proposing an
extended SP model capable of charge and discharge modelling at 4C rates [36]. Han X
and Ouyang M, among others, approximated the solid-phase diffusion of lithium ions
using multiple first-order processes and used parabolic fitting to handle liquid-phase
concentration distribution, which resulted in an extended SP model that is applicable to
battery management systems [37]. S. K. Rahimian and S. Rayman incorporated a liquid-
phase potential and material balance into the SP model [38]. I. Goto and H. Ohkuma
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included the concentration distribution of lithium electrolyte ions into the SP model [39].
In the extended SP model, the electrode is simplified to a single active particle, and the
electrochemical processes omitted in the SP model are approximated and solved.

The extended single particle model offers enhanced electrochemical modeling accuracy,
enabling the more precise representation of phenomena such as lithium-ion concentration
polarization and potential hysteresis. By coupling the extended SP model with flight
control data, it becomes possible to dynamically predict battery performance degradation
and thermal accumulation during flight, and thereby to provide critical decision-making
support for safe UAV landing and an early warning of battery degradation.

3.1.2. Equivalent Circuit Model

In UAV battery management, equivalent circuit models have become a core tool for
battery state estimation and energy management within flight control systems, owing to
their computational simplicity and fast real-time response. The equivalent circuit model
of a battery is developed based on its operational principles, in which a circuit network is
utilized to characterize the performance of lithium-ion batteries. These models are thus
applicable to a broader range of battery types. To meet the demands of simulation tech-
niques, various equivalent circuit models for lithium-ion batteries have been developed.
Reference [40] categorizes the existing methods for constructing equivalent circuit models
into two types: time-domain and frequency-domain analysis models. Time-domain anal-
ysis models primarily utilize voltage and current data of lithium-ion batteries, whereas
frequency-domain analysis models rely on impedance measurements, such as Nyquist and
Bode plots. The most commonly used equivalent circuit models are established through
time-domain analysis. This review primarily focuses on the RC, PNGV, Thevenin, and
modified Thevenin models [41].

1. RC Model

The RC model consists of two capacitors and three resistors, as illustrated in Figure 5.
The large capacitor Cb represents the charge storage capacity of the lithium-ion battery,
while the small capacitor Cs accounts for the surface capacitance and diffusion effects of
the battery. Resistor Rt denotes the terminal resistance, Rs represents the surface resistance,
and Re corresponds to the terminal resistance.

 

Figure 5. RC model.

The voltages across the two capacitors, VCb and VCs, serve as state variables, the
terminal current IL as the input variable, and the terminal voltage VL as the output variable.
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Equation (2) is formulated based on Kirchhoff’s laws, from which the state-space equations
of the RC model can be derived.
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The RC model features a simple structure and parameters with clear physical interpre-
tations, which makes it suitable for rapid state estimation in embedded systems. In UAV
applications, this model can be integrated into the flight control system to enable real-time
battery voltage prediction and health state estimation during flight, which ensures energy
continuity throughout the execution of missions.

2. Thevenin Model

The Thevenin model, as shown in Figure 6, is a widely used model. This model
employs an ideal voltage source to represent the open-circuit voltage of a lithium-ion
battery and incorporates a series resistor RO and a parallel RC network to predict the
battery’s response to transient loads at a specific state of charge.

 

Figure 6. Thevenin model.

The voltage across capacitor Cp, denoted as VCp, serves as the state variable, the
terminal current IL as the input variable, and the terminal voltage VL as the output variable.
Equations (4) and (5) are formulated based on Kirchhoff’s laws, from which the state-space
equations of the Thevenin model are derived.

.
VCp = −

1
RPCP

VCp +
1

CP
IL (4)

VL = VCp + RO IL + OCV (5)

Due to its simplicity and ability to meet the basic requirements of lithium-ion batteries,
the Thevenin model has been widely adopted. However, if the open-circuit voltage does
not vary with the state of charge, this model is limited to describing the transient response
of lithium-ion batteries at a specific SOC. Consequently, it is incapable of capturing steady-
state voltage variations or predicting the runtime of the battery. Additionally, the model
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cannot describe the relationship between the OCV and SOC, nor can it predict the battery’s
runtime or manage its charge–discharge processes.

In sudden high-current scenarios that are commonly encountered during UAV flights,
such as takeoff or emergency obstacle avoidance, the Thevenin model enables the efficient
evaluation of voltage drop and transient response characteristics with a low computational
cost. It is widely used in flight control systems to support decision-making for energy-
performance trade-offs.

3. PNGV Model

As depicted in Figure 7, the PNGV model is derived by incorporating an additional
capacitor Co into the Thevenin model. The PNGV model enhances the dynamic tracking
capability between the battery voltage and state of charge by introducing a polarization
capacitor and thereby enabling more accurate endurance prediction during long-duration
flight missions in unmanned aerial vehicles. This model possesses clear physical sig-
nificance, with the ideal voltage source representing the OCV of the lithium-ion battery.
Resistor RO denotes the battery’s ohmic internal resistance, resistor Rp represents the polar-
ization internal resistance, and capacitor Cp corresponds to the polarization capacitance. IL

denotes the load current, Ip represents the polarization current, VL is the terminal voltage,
and capacitor Co accounts for the OCV variation caused by the time integral of the load
current IL. When the lithium-ion battery is in a charging or discharging state, the accumu-
lation of current over time alters the SOC, which further modifies the battery’s OCV and is
manifested as a voltage change across capacitor Co. In this model, capacitor Co not only
represents the capacity of the lithium-ion battery but also its DC response, and thereby
addresses the limitations of the Thevenin model.

 

Figure 7. PNGV model.

The voltages across capacitors Co and Cp, denoted as VCp and VCo, serve as state
variables, the terminal current IL as the input variable, and the terminal voltage VL as the
output variable. Equations (6) and (7) are developed based on Kirchhoff’s laws, from which
the state-space equations of the PNGV model are derived.
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VL =
[

1 1
]

[

VCo

VCp

]

+ RO IL + OCV (7)

The PNGV model, proposed by the Partnership for a New Generation of Vehicles in
the United States, is significantly influenced by the Freedom CAR hybrid electric vehicle
initiative. Owing to its systematic parameter identification methods and relatively high
model accuracy, the PNGV model facilitates straightforward parameter identification
experiments. Consequently, it is one of the most commonly adopted models.

Additionally, for medium- to high-power UAV platforms, the PNGV model can accu-
rately characterize the evolution of the state of charge and voltage during long-endurance
flights. This facilitates the development of mission-oriented endurance prediction systems
and thereby enhances the robustness of flight mission planning and improves energy
utilization efficiency.

4. Modified Thevenin Model

Single-pole models of lithium-ion batteries do not always meet the requirements
for dynamic performance. Consequently, researchers have introduced various bipolar
and multipolar models [42]. Among these, the modified Thevenin model, as depicted
in Figure 8, is frequently utilized. In this model, an ideal voltage source represents the
open-circuit voltage of the lithium-ion battery. Resistor RO denotes the ohmic internal
resistance, resistor Re represents the electrochemical polarization internal resistance, and
capacitor Ce corresponds to the electrochemical polarization capacitance. Resistor Rc is
associated with the concentration polarization capacitance, capacitor Cc represents the con-
centration polarization capacitance, VCe denotes the electrochemical polarization voltage,
VCc represents the concentration polarization voltage, IL is the load current, and VL is the
terminal voltage.

 

Figure 8. Modified Thevenin model.

The electrochemical polarization voltage VCe and the concentration polarization volt-
age VCc serve as state variables, the terminal current IL as the input variable, and the
terminal voltage VL as the output variable. Equations (8) and (9) are derived based on
Kirchhoff’s laws, from which the state-space equations of the modified Thevenin model
are obtained.
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VL =
[

1 1
]

[

VCe

VCc

]

+ RO IL + OCV (9)

The polarization in the modified Thevenin model enables a precise representation
of the battery’s dynamic characteristics. As the performance requirements for lithium-
ion batteries continue to increase, the application of this model has become increasingly
widespread. The frequent dynamic load variations encountered during UAV missions
impose higher demands on battery performance evaluation. The modified Thevenin
model incorporates concentration polarization processes to more accurately characterize
the dynamic voltage response of the battery, which aids in voltage drop risk prediction and
the dynamic correction of the remaining energy during flight state transitions. However,
similar to its original version, the modified Thevenin model cannot account for OCV
variations caused by the time integration of the load current IL. If the OCV in the Thevenin
model is treated as a variable, the equivalent relationship between the lithium-ion battery’s
OCV and its SOC can replace the capacitor Co in the PNGV model. Despite its limitations,
the modified Thevenin model retains significant practical importance.

3.2. Data-Driven Models

Data-driven models represent an approach that leverages extensive operational data to
model and predict the dynamic behavior of energy storage battery systems using methods
such as statistical learning, machine learning, or deep learning. In contrast to white-box
modeling, which relies on the physicochemical mechanisms within the battery, data-driven
models fall into the “black-box” or “gray-box” category. Their core principle is to forego
explicit physical model construction and instead utilize the inherent relationships within the
data to map and predict battery performance metrics. This approach is particularly suitable
for scenarios where physical processes cannot be accurately modeled or where abundant
data are available but the structural information is incomplete. Data-driven models offer
advantages such as low modeling costs, high deployment efficiency, and strong adaptability.

In real-world operational environments, unmanned aerial vehicle battery systems are
exposed to complex and dynamic working conditions such as frequent takeoffs and land-
ings, rapid load switching, strong electromagnetic interference, and pressure fluctuations at
high altitudes. Data-driven approaches can leverage historical flight data—such as data on
the voltage, current, temperature, and load power—to rapidly adapt to variations in flight
missions and environmental conditions. This enables the real-time, online estimation of
key indicators such as the state of charge, state of health, and remaining useful life within
complex urban airspace, and thereby enhances flight safety and mission success rates.

As illustrated in Figure 9, data-driven models are primarily categorized into four types:
neural network-based, regression-based, optimization-based, and logic-based models,
with the classification being based on the core algorithms and data processing methods
used by the model. Neural network-based models rely on artificial neural networks,
employing multilayer nonlinear mapping to learn complex data relationships, which makes
them suitable for high-dimensional nonlinear problems. Regression-based models utilize
statistical regression techniques to focus on fitting mathematical relationships between
inputs and outputs and are applicable to scenarios with clear data patterns. Optimization-
based models employ optimization algorithms to identify optimal parameters or structures
and are commonly used for system parameter identification or control strategy optimization.
Logic-based models, which are grounded in logical reasoning or rules, emphasize rule-
driven decision-making and are well-suited for systems with discrete or well-defined
conditions. These four types of data-driven models reflect the differences in modeling
objectives, complexity, and applicable scenarios among various algorithms.
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Neural Network Category 

Artificial Neural Networks, Recurrent Neural Networks, Long and Short Term Memory 

Networks, Gated Recurrent Units, Convolutional Neural Networks, Self-Encoders, 

Generative Adversarial Networks, Transformer

Regression Category

Linear Regression, Polynomial Regression, Support Vector Regression, 

Random Forest Regression, Gradient Boosted Regression, Kernel 

Adaptive Filtering Regression

Optimization Category 

Particle Filtering, Genetic Algorithms, Particle Swarm Optimization 

Algorithms, Differential Evolutionary Algorithms, Gray Wolf 

Optimization Algorithms, Deep Reinforcement Learning

Logical Category

Fuzzy Logic, Decision Trees, Hidden Markov Models, Bayesian 

Networks, Fuzzy Neural Networks, Dynamic Bayesian Networks

 

Figure 9. Classification of data-driven models for UAV batteries.

3.2.1. Neural Network-Based Models

Neural network-based models represent a significant branch of data-driven models
for unmanned aerial vehicle battery systems, being constructed using artificial neural
networks (ANNs) and excelling in handling complex nonlinear relationships and high-
dimensional data. Their core mechanism involves simulating the dynamic characteristics of
UAV batteries—such as their capacity degradation, voltage response, and internal resistance
variations—through a multilayer structure comprising input, hidden, and output layers.
During training, the model adjusts weights using experimental or flight data, including
current, voltage, and temperature data, to optimize its prediction accuracy. Common
types include feedforward neural networks, recurrent neural networks (RNNs), and long
short-term memory (LSTM) networks, with LSTM networks being particularly suitable
for UAV battery state estimation due to their ability to capture long-term dependencies
in time-series data. Neural network-based models do not require in-depth knowledge of
internal battery mechanisms, offering strong generalization capabilities. However, they
demand substantial high-quality data and computational resources, which results in longer
training times. In recent years, the integration of deep learning and transfer learning has
expanded their applications in UAV battery life prediction and fault diagnosis, significantly
enhancing flight safety and the precision and robustness of battery management.

Artificial neural networks were among the earliest neural networks to be applied to bat-
tery modeling [43]. Utilizing a multilayer perceptron (MLP) structure with fully connected
layers, ANNs fit nonlinear relationships between battery operational data and state metrics.
Their training typically employs the backpropagation algorithm with a mean squared error
(MSE) loss function, which makes ANNs suitable for static mapping tasks such as capacity
degradation prediction or voltage–current relationship modeling. ANNs achieve high ac-
curacy without requiring a detailed understanding of battery mechanisms, outperforming
methods like open-circuit voltage estimation in lead-acid battery state-of-charge applica-
tions. Their advantages include their structural simplicity and ease of implementation.
However, ANNs struggle to handle time-series data, which limits their ability to capture
dynamic behaviors in charge–discharge cycles, and their generalization to complex datasets
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is constrained, often requiring extensive feature engineering. Although enhanced by deep
networks and optimization algorithms (e.g., Adam), ANNs remain valuable in simple
scenarios but are gradually being supplanted by more sophisticated models.

Recurrent neural networks (RNNs) [44] are applied to battery modeling due to their
ability to process time-series data. By retaining historical information through a recurrent
structure, RNNs take sequential inputs such as the voltage and current to predict battery
states. They are well-suited for capturing short-term dynamic behaviors, such as changes
during charge–discharge processes. However, RNNs suffer from the vanishing gradient
problem, which limits their ability to model long-term dependencies and results in reduced
accuracy under complex operating conditions. Their strength lies in sequence modeling, but
their training is sensitive to hyperparameters and their computational costs are high. Due
to gradient-related limitations, traditional RNNs have gradually faded from mainstream
application, although they laid the foundation for dynamic system modeling.

Long short-term memory networks [45], an advanced variant of RNNs, incorporate
memory cells and gating mechanisms (input, forget, and output gates) to retain long-term
historical information, which makes them particularly suitable for modeling slow battery
degradation processes. LSTMs excel in online SOC estimation and their combination with
Kalman filtering further enhances their accuracy. Compared to traditional RNNs, LSTMs
effectively capture long-term dependencies and adapt to dynamic changes in complex
operating conditions. However, they require substantial data for training, have a high
computational complexity, and involve intricate hyperparameter tuning. LSTMs offer
high accuracy and robustness, which makes them widely used in battery life prediction,
although they may be limited in scenarios that require strong real-time performance.

Gated recurrent units (GRUs) [46], another RNN variant, feature a simpler structure
than LSTMs, merging the input and forget gates into an update gate, which reduces
the number of parameters and the computational complexity. With inputs and outputs
similar to LSTMs, GRUs are suitable for SOC, state-of-health (SOH), or remaining useful
life (RUL) predictions. GRUs enable faster SOC estimation on embedded devices, which
makes them ideal for real-time applications while still allowing them to retain their long-
term dependency modeling capabilities. They offer higher training efficiency and simpler
hyperparameter tuning. However, their modeling capacity for extremely long sequences is
slightly inferior to that of LSTMs, and they still require substantial data support. Due to
their balance of efficiency and accuracy, GRUs have become a popular choice for battery
modeling, particularly in resource-constrained scenarios, and there is potential for their
future integration with lightweight techniques for edge computing applications.

Inspired by computer vision, convolutional neural networks (CNNs) [47] have been
adapted for battery modeling. Battery data, such as voltage curves and impedance spectra,
exhibit local patterns that are suitable for feature extraction using convolutional kernels.
CNNs capture temporal or spatial correlations through convolution operations, with pool-
ing layers reducing the dimensionality of the output SOC, SOH, or RUL predictions.
One-dimensional CNNs process time-series data, while two-dimensional CNNs analyze
impedance spectra. CNNs are robust to noise, parameter-efficient, and well-suited for large-
scale data processing. However, their ability to model long-term temporal dependencies is
limited, which makes it challenging to capture slow changes in battery cycles. To address
this, CNNs are often combined with LSTMs or GRUs to form hybrid models with enhanced
dynamic modeling capabilities. The efficiency of CNNs in feature extraction makes them a
valuable tool for complex battery modeling.

Autoencoders (AEs) [48] are employed in battery modeling due to their unsupervised
learning capabilities. AEs consist of an encoder that compresses input data into a low-
dimensional representation and a decoder that reconstructs the data, which makes them
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suitable for tasks such as dimensionality reduction, denoising, or anomaly detection.
Variational autoencoders (VAEs) model data distributions, excelling in scenarios with
scarce fault data. Denoising autoencoders (DAEs) enhance models’ robustness by handling
noisy data. The primary advantage of AEs is their ability to operate without labeled
data, which makes them ideal for preprocessing or feature extraction. However, their
direct modeling capacity for high-dimensional time-series data is limited, and they often
require integration with networks like LSTMs. AEs typically serve as auxiliary tools in
battery modeling, but their potential in multimodal data fusion is significant, particularly
in data-scarce scenarios.

Generative adversarial networks (GANs) [49] are utilized in battery modeling for their
data augmentation capabilities. Comprising a generator that produces realistic battery data
and a discriminator that distinguishes between real and synthetic data, GANs are effective
for expanding training datasets or detecting anomalies. Conditional GANs (CGANs)
generate data for specific operating conditions and have found wide applications in SOC
estimation and fault detection. The strength of GANs lies in their mitigating data scarcity
and enhancing models’ generalization. However, their training is often unstable, requiring
carefully designed loss functions. GANs that incorporate physical constraints are emerging
as a research focus, promising to improve the authenticity of generated data. GANs
hold substantial potential for small-sample learning and fault diagnosis, with their future
applications likely extending to full-lifecycle data simulation.

Transformer models, known for their powerful sequence modeling capabilities, have
been applied to battery modeling [50]. Their self-attention mechanism assigns weights to
each time step, capturing both short- and long-term dependencies. With multidimensional
time-series inputs, the encoder extracts features, and the decoder generates predictions
for the SOC or RUL. Transformers achieve high accuracy in life prediction under complex
operating conditions, benefiting from their ability to process long sequences in parallel,
which makes them suitable for large-scale datasets. However, their high computational
complexity demands substantial data and computational resources. Lightweight trans-
formers (e.g., Informer) and pre-training techniques are being explored to reduce costs.
Transformers show immense potential in multi-battery collaborative management and
full-lifecycle modeling. Although their application is still in the early stages, their parallel
processing and accuracy advantages position them as a future mainstream direction.

From simple artificial neural networks to complex transformer models, neural net-
works have significantly advanced battery modeling techniques. ANNs established a
foundation for static modeling through nonlinear mapping, while RNNs, LSTMs, and
GRUs addressed dynamic sequence modeling challenges. CNNs and AEs optimized fea-
ture extraction, and GANs and transformers overcame limitations in data scarcity and
long-sequence modeling. The primary strength of neural networks lies in their robust
nonlinear fitting capabilities and adaptability to complex operating conditions, which
enable the precise prediction of battery state parameters such as the SOC, SOH, and RUL.
However, their training requires substantial data and computational resources, and their
interpretability is limited, which constrains real-time applications. Recent developments
in hybrid modeling and lightweight designs have improved the real-time performance of
battery modelling, while transfer learning has reduced data requirements. In the future,
hybrid models that integrate physical knowledge, multimodal data fusion, and enhanced
interpretability will be key research directions that offer new opportunities for efficient
battery management.
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3.2.2. Regression-Based Models

Regression-based, data-driven models rely on statistical regression techniques to
model battery behavior by fitting mathematical relationships between inputs (e.g., voltage,
current, temperature) and outputs (e.g., battery state parameters). Their core premise
assumes that battery behavior can be described by parameterized functions. Common
methods include linear regression, polynomial regression, support vector regression (SVR),
random forest regression (RFR), gradient boosting regression (GBR), and kernel adaptive
filtering regression (KAF). These models typically aim to minimize prediction errors, opti-
mizing parameters through algorithms such as gradient descent or least squares. In battery
modeling, regression-based models excel in scenarios with clear data patterns, such as
capacity degradation trend prediction or state parameter estimation under static conditions.
Their advantages include algorithmic simplicity, high computational efficiency, and strong
interpretability, which make them suitable for use with small-scale datasets or real-time
applications. However, their limitations lie in their restricted ability to model nonlinear,
high-dimensional, or dynamic data, as they struggle to capture long-term temporal de-
pendencies or complex degradation patterns. Recent advancements that have combined
feature selection and ensemble learning have kept regression-based models competitive in
specific scenarios, although they often require integration with neural networks or other
methods to enhance their accuracy.

Linear regression [51], rooted in statistics, is the most fundamental regression method.
It assumes a linear relationship between battery operational data (e.g., voltage, current)
and state metrics, optimizing parameters via the least squares method. Widely applied
in simple conditions, such as open-circuit voltage (OCV)-SOC estimation for lead-acid
batteries, it is valued for its computational simplicity. Its strengths include its ease of
implementation, strong interpretability, and suitability for small-scale datasets and rapid
deployment, particularly for beginners. Linear regression serves as a baseline model,
providing a reference for more complex methods. However, its capacity to model nonlinear
relationships is limited, which makes it inadequate for capturing dynamic behaviors like
nonlinear capacity loss during cycling, and it is sensitive to noise, requiring high-quality
data. In modern complex scenarios, linear regression is often used as a component of
hybrid models or for validating simple hypotheses.

Polynomial regression [52] extends linear regression by incorporating higher-order
terms to fit nonlinear relationships. Commonly used for fitting voltage–current curves
or predicting capacity degradation trends, it is prevalent in lithium-ion battery research.
Polynomial regression retains the simplicity and interpretability of linear regression while
capturing moderately nonlinear patterns, has low computational costs, and is suitable
for small-to-medium-scale datasets. Its limitations include the risk of overfitting with
higher-order terms, particularly with limited data, which leads to poor generalization.
Additionally, it struggles with dynamic time-series modeling, failing to address long-term
dependencies in battery cycling. When combined with regularization techniques, polyno-
mial regression remains valuable in simple scenarios but typically requires integration with
other methods to improve its accuracy.

Support vector regression (SVR) [53], based on support vector machine principles,
maps data to a high-dimensional space using kernel functions to fit nonlinear relation-
ships, with the aim of minimizing the structural risk. SVR performs exceptionally in
lithium-ion battery state parameter estimation. Its strengths include robustness to noise
and outliers, suitability for small-to-medium-scale datasets, and flexibility in adapting
to various nonlinear patterns through kernel functions. However, SVR is sensitive to
kernel and regularization parameters, requiring complex tuning, and its computational
cost escalates with the use of large-scale data. While effective for static state predictions,
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SVR requires enhancements for dynamic sequence modeling and is often combined with
sequential models. SVR’s strong generalization capabilities ensure its continued importance
in battery modeling.

Random forest regression (RFR) [54], an ensemble method based on decision trees,
constructs multiple trees through random sampling and feature selection, averaging its
predictions to enhance its accuracy. Widely applied in battery life prediction, such as esti-
mating the SOH from voltage curves, RFR achieves accuracy comparable to that of neural
networks. Its advantages include robustness to noise, a low risk of overfitting, and the
ability to assess feature importance, and it is often used to guide feature engineering. How-
ever, its predictions are discrete averages, and the training time increases with the number
of trees. RFR excels in complex condition state estimation but requires improvements for
dynamic sequence modeling, often being paired with sequential models to enhance its
dynamic capabilities. RFR’s potential in multivariable scenarios remains significant.

Gradient boosting regression (GBR) [55] iteratively optimizes weak learners to fit
residuals, constructing high-accuracy models. In battery life prediction, GBR achieves su-
perior precision, effectively capturing complex nonlinear patterns. It is highly adaptable to
imbalanced or noisy data, which makes it suitable for multivariable battery state parameter
estimation. GBR’s strengths include high accuracy and flexibility, with a performance that
is tunable through learning rate and tree depth adjustments. However, it is sensitive to
hyperparameters, has long training times, and risks overfitting due to its complexity. GBR
is commonly used for high-precision state predictions, and its efficiency can be further
improved with automated hyperparameter tuning. GBR’s potential to rival deep learning
models in complex conditions makes it a key choice for high-accuracy modeling.

Kernel adaptive filtering regression (KAF) [56] integrates kernel methods with adap-
tive filtering, allowing the dynamic adjustment of parameters through online learning to
adapt to changing battery data. It is well-suited for real-time applications and resource-
constrained scenarios, such as state estimation under dynamic conditions. KAF’s advan-
tages include a low computational cost and online learning capabilities, which enable it to
rapidly adapt to condition changes, and it has significant potential in battery management
systems (BMSs). However, KAF is sensitive to initial parameters, and its long-term predic-
tion accuracy may lag behind that of deep learning models. KAF offers a novel approach
for real-time scenarios, with future integration with edge computing likely to expand its
applications, particularly in high-response-demand environments.

Regression-based methods have evolved from the simple linear fitting of linear regres-
sion to the nonlinear modeling of polynomial regression, SVR, and RFR, and further to the
high-precision dynamic predictions of GBR and KAF. Linear and polynomial regression
provide straightforward baselines, SVR and RFR enhance robustness, while GBR, KAF, and
advanced methods address complex scenarios. The strengths of regression-based models
lie in their simplicity, computational efficiency, and interpretability, with SVR and RFR
offering noise robustness and KAF enabling online learning. Their limitations include
restricted nonlinear modeling capabilities and weak dynamic sequence processing. Recent
advancements in ensemble learning and online optimization have improved the perfor-
mance of these models. In the future, integrating physical constraints, multimodal data
fusion, and lightweight designs will address interpretability challenges, enabling reliable
battery management.

3.2.3. Optimization-Based Models

Optimization-based data-driven models address parameter identification and control
strategy design by seeking optimal solutions to target functions, such as minimizing pre-
diction errors or maximizing system efficiency. Their core approach involves using global
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or local search algorithms to fit complex relationships between battery operational data
and state parameters. Common methods include particle filtering (PF), genetic algorithms
(GAs), particle swarm optimization (PSO), differential evolution (DE), grey wolf optimiza-
tion (GWO), deep reinforcement learning (DRL), and hybrid optimization. These models
do not require in-depth knowledge of battery mechanisms and excel in handling nonlinear,
high-dimensional problems, which makes them widely used for equivalent circuit model
parameter estimation and charging strategy optimization. Their strengths include robust
global search capabilities and adaptability to complex operating conditions, particularly in
dynamic scenarios.

Particle filtering (PF) [57], based on Monte Carlo sampling, estimates the posterior
distribution of battery states by generating numerous particles, which makes it suitable
for nonlinear, non-G MSM systems. PF uses data such as the voltage and current to ap-
proximate the SOC or SOH, excelling in handling dynamic uncertainties and commonly
being applied in real-time state tracking. Its advantages include strong adaptability to
nonlinear systems and the ability to integrate multi-source information (e.g., temperature,
cycle counts) to enhance its accuracy, which make it ideal for online battery state estimation.
However, PF suffers from particle degradation, which can lead to bias, and its computa-
tional complexity increases with the number of particles, which reduces its efficiency in
large-scale systems. Improved resampling strategies are critical to mitigate these issues. PF
performs reliably on small-scale datasets and is often combined with Kalman filtering to
form hybrid methods, which enhances its robustness and accuracy, with this combination
serving as a benchmark for battery state estimation.

Genetic algorithms (GAs) [58] emulate biological evolution, using selection, crossover,
and mutation operations to search for optimal solutions in the parameter space and thus
optimize battery model parameters. With the objective of minimizing errors, GAs are
well-suited for parameter identification in ECMs, as they are capable of handling complex
nonlinear optimization problems. Their strengths include robust global search capabilities,
the ability to escape local optima, and a low dependence on initial conditions, which ensure
broad adaptability. However, GAs converge slowly and incurs high computational costs,
particularly in high-dimensional parameter spaces. To improve their convergence, GAs are
often combined with local optimization algorithms to form more efficient search strategies.
While their standalone use has decreased, GAs remain a cornerstone of hybrid optimization
frameworks, being applicable to parameter estimation and multi-objective optimization
scenarios, such as balancing energy efficiency and battery lifespan.

Particle swarm optimization (PSO) [59], inspired by collective behaviors, optimizes
target functions through collaborative particle searches, and is commonly used for ECM
parameter estimation or control strategy design. PSO offers advantages such as minimal
parameters, ease of implementation, and superior global search capabilities compared to
traditional gradient-based methods, which makes it suitable for small-to-medium-scale
optimization problems. Its limitations include the risk of converging to local optima in
high-dimensional or multimodal problems and its sensitivity to velocity update parameters,
which necessitate careful tuning. To enhance its performance, PSO is often integrated with
deep models to improve its adaptability in complex conditions. Widely applied in SOH
prediction and charging optimization, PSO’s efficiency and flexibility make it a classic
method in battery modeling.

Differential evolution (DE) [60] optimizes parameters through differential mutation,
crossover, and selection operations, which makes it suitable for parameter identification
in complex battery models, such as electrochemical models. DE offers strong exploration
capabilities and faster convergence than GAs, with a low dependence on initial conditions.
Its advantages include a simple algorithmic structure, suitability for high-dimensional
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nonlinear optimization, and efficiency in handling multi-objective tasks, such as balanc-
ing accuracy and efficiency. However, DE is sensitive to mutation factors and crossover
rates, and improper tuning can degrade its performance. Adaptive parameter adjustment
strategies are increasingly explored to address this issue. DE excels in SOC estimation and
lifespan prediction, and its recent use in multivariable optimization scenarios, coupled
with dynamic tuning, enhances its potential for real-time modeling applications.

Grey wolf optimization (GWO) [61], inspired by wolf pack hunting behaviors, op-
timizes target functions by simulating leadership and collaboration mechanisms, which
makes it suitable for battery model or control parameter adjustments. GWO is simple,
gradient-free, and converges quickly. Its strengths include a hierarchical structure that
balances exploration and exploitation, offering superior robustness compared to traditional
swarm intelligence algorithms. This makes it suitable for small-to-medium-scale optimiza-
tion tasks. However, GWO may converge prematurely in ultra-high-dimensional problems,
in which case it requires improved diversity mechanisms to maintain its search capabilities.
With an accuracy surpassing that of PSO and GWO, when combined with multi-objective
optimization, its applicability in complex conditions is broad, and this method is emerging
as a promising choice for efficient modeling.

Deep reinforcement learning (DRL) [62], integrating deep learning and reinforcement
learning, optimizes BMS control or parameter adjustments by enabling agents to learn opti-
mal strategies. Targeting long-term reward maximization, DRL adapts to high-dimensional
dynamic systems. Its strengths include leveraging deep networks to extract features and
handle nonlinear behaviors in complex conditions, which make it suitable for adaptive
SOC estimation or charging optimization. However, DRL requires substantial data and
computational resources for training, and its strategy convergence may be unstable, with
limited interpretability. Transfer learning, to reduce costs, is a growing research focus. DRL
holds immense potential in dynamic optimization scenarios, such as designing strategies
to extend batteries’ lifespan.

Hybrid optimization methods integrate multiple algorithms, combining the strengths
of global and local searching to optimize complex battery model parameters or control
strategies. For instance, combining GAs with PSO significantly improves their accuracy [63].
Targeting multi-objective optimization (e.g., balancing accuracy and efficiency), hybrid
optimization overcomes the limitations of single methods, offering strong robustness. Its
advantages include balancing convergence speed and global search capabilities, which
allows it to adapt to multivariable optimization in complex conditions. However, its
design complexity requires tailored algorithm combinations for specific problems. Hybrid
optimization excels in full-lifecycle parameter identification and can further improve
models’ performance through adaptive mechanisms.

Optimization-based methods have evolved from the probabilistic estimation of par-
ticle filtering to the swarm intelligence searches of genetic algorithms, particle swarm
optimization, and differential evolution, and further to the dynamic modeling of grey wolf
optimization, deep reinforcement learning, and hybrid optimization. PF excels in nonlinear
state estimation, GAs and PSO provide global search capabilities, DE and GWO offer faster
convergence, and DRL adapts to dynamic control. The strengths of optimization-based
models lie in escaping local optima, handling high-dimensional nonlinear problems, and
supporting parameter identification and strategy optimization. However, they incur high
computational costs, involve complex parameter tuning, and, for DRL, involve lengthy
training times. Recent advancements in adaptive strategies and multi-objective optimiza-
tion have improved the efficiency of these models. In the future, reducing computational
demands through physical knowledge integration, multimodal data fusion, and algorithmic
lightweighting will drive BMSs toward efficient, intelligent development.
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3.2.4. Logic-Based Models

Logic-based models rely on rule-based reasoning or logical relationships to model
battery behavior by defining explicit state transitions or decision rules. Their core approach
involves utilizing logical frameworks, such as fuzzy logic, decision trees, or Markov models,
to map the relationship between unmanned aerial vehicle battery operational data and
states. These models are commonly applied in fault diagnosis, state classification, and
flight control strategy development, particularly in scenarios with discrete or well-defined
conditions. Typical methods include fuzzy logic control, decision tree classification, hidden
Markov models (HMMs), Bayesian networks, fuzzy neural networks (FNNs), and dynamic
Bayesian networks (DBNs). The strengths of logic-based models lie in their clear rules,
strong interpretability, ability to incorporate expert knowledge, and high computational
efficiency, which make them suitable for real-time UAV applications. In recent years, logic-
based models have increasingly been combined with neural networks to enhance their
flexibility. In the future, logic-based models that incorporate adaptive rules and multimodal
data will play a greater role in intelligent decision-making and safety management for UAV
battery systems.

Fuzzy logic (FL) [64] employs fuzzy sets and membership functions to model un-
certainty, using expert-defined rules to infer battery states, which makes it suitable for
control and diagnostic scenarios. FL maps data such as voltage and current data to fuzzy
rules, generating outputs like the SOC or fault states, and is often used for tasks like
overcharge detection. Its advantages include intuitive rules, strong interpretability, no
requirement for precise mathematical models, and high computational efficiency, and it
is ideal for real-time applications. FL effectively handles nonlinear relationships through
fuzzy inference, performing reliably in simple conditions. However, its rule design relies
heavily on expert experience, which limits its ability to handle high-dimensional data or
dynamic sequence modeling. To enhance its flexibility, FL is often combined with adap-
tive algorithms to optimize its rule generation. FL is widely applied in BMSs for state
classification and preliminary control strategies, as it is suitable for rapid deployment in
low-complexity scenarios.

Decision trees (DTs) [65] use a tree-like structure to perform classification or regression
based on feature conditions, and are used in optimizing battery state predictions. With
operational data as the input, DTs split nodes based on information gain, outputting SOH
or fault categories, and are commonly used in health classification tasks. Their advantages
include clear logic, low computational cost, and the rapid processing of discrete data,
which make them suitable for fault diagnosis. DTs reveal key variables through feature
selection, offering strong interpretability and facilitating the analysis of influencing factors.
However, DTs are prone to overfitting, exhibit poor generalization on small datasets, and
have limited effectiveness in continuous dynamic modeling. To improve their performance,
DTs are often used as components in ensemble models. DTs perform reliably in preliminary
classification tasks, and combining them with automated feature engineering can enhance
their applicability in complex conditions.

Hidden Markov models (HMMs) [66] model time-series data based on state transition
probabilities, assuming battery states as hidden variables and inferring the SOC or SOH
from observed data. They are suitable for cycle degradation prediction. Their strengths
include capturing temporal dependencies, which makes them appropriate for sequential
state estimation in nonlinear systems with moderate computational efficiency. HMMs
handle uncertainty through probabilistic inference, meeting dynamic modeling needs.
However, their assumption of Markovian state transitions limits their ability to model
complex long-term dependencies, and their training requires substantial data. To improve
their accuracy, HMMs are often combined with particle filtering. HMMs perform reliably
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in SOC estimation and fault detection, and expanding the state space can further enhance
their modeling capabilities in multi-condition scenarios.

Bayesian networks (BNs) [67] model probabilistic dependencies between variables us-
ing directed graphs, optimizing the conditional distribution of battery states and generating
SOH or fault probabilities. They are commonly used for anomaly detection. Their advan-
tages include the ability to integrate multi-source data (e.g., temperature, cycle counts),
handle uncertainty through probabilistic inference, and offer strong interpretability, which
make them suitable for static or semi-dynamic scenarios with moderate computational
complexity. BNs facilitate causal analysis but require careful network structure design, and
their inference costs increase in complex scenarios, which limits their dynamic modeling
capabilities. To enhance their performance, BNs are often combined with temporal models.
BNs are widely applied in fault diagnosis and state classification, and automated structure
learning can improve their adaptability across diverse conditions.

Fuzzy neural networks (FNNs) [68] integrate fuzzy logic and neural networks, opti-
mizing state predictions through adaptive rules to generate SOC or RUL predictions, and
are suitable for fault diagnosis. Their strengths include leveraging neural networks to auto-
matically adjust membership functions, which reduces their reliance on expert experience
and allows them to adapt to complex nonlinear relationships. FNNs combine inference and
learning, offering superior accuracy and generalization compared to FL, which makes them
suitable for dynamic conditions. However, their training requires substantial data, their
hyperparameter tuning is complex, and their computational costs are high. For real-time
applications, FNNs often adopt lightweight structures. FNNs excel in state estimation and
health management, and integrating online learning can further enhance their dynamic
modeling potential in BMSs.

Dynamic Bayesian networks (DBN) [69] extend BNs to time-series data, modeling
battery dynamic behavior through temporal probabilities for state parameter estimation.
They are suitable for full-lifecycle prediction. Their strengths include capturing long-term
dependencies, integrating multisource data to improve their accuracy, and adapting to
nonlinear systems in complex conditions. DBNs handle dynamic uncertainty through
temporal inference, offering greater flexibility than static BNs. However, they require
careful structure and parameter design, their performance is limited with insufficient
data, and their computational costs are significant. To enhance their robustness, DBNs
are often combined with deep models. DBNs show significant potential in dynamic state
estimation, and adaptive structure design can further improve their performance in multi-
scenario modeling.

Logic-based methods have evolved from the rule-based inference of fuzzy logic and
decision trees to the probabilistic modeling of hidden Markov models and Bayesian net-
works, and further to the dynamic predictions of fuzzy neural networks and dynamic
Bayesian networks. FL and DTs provide intuitive rules, HMMs and BNs excel in sequential
and probabilistic inference, while FNNs and DBNs have an enhanced accuracy in complex
scenarios. The strengths of logic-based models include strong interpretability, clear rules,
suitability for fault diagnosis and state classification, and high computational efficiency.
However, their rule design relies on experience, their dynamic modeling capabilities are
limited, and FNNs and DBNs require substantial data. Recent advancements in adaptive
rules and model integration have improved their flexibility. In the future, simplifying
rules, integrating physical knowledge, and adopting online learning will drive the broader
application of logic-based models in intelligent battery management.
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3.3. Hybrid Models

Hybrid modeling integrates the interpretability of physics-based mechanistic models
with the robust fitting capabilities of data-driven models, aiming to address the limitations
of both pure white-box models, which heavily rely on mechanistic understanding and
exhibit low inference efficiency, and black-box models, which are sensitive to data quality
and lack interpretability. By achieving the complementary coupling of physical and data-
driven approaches at different modeling levels, hybrid models construct high-accuracy,
highly generalizable, and robust frameworks for battery behavior prediction and health
assessment. These models have emerged as a research hotspot in energy storage battery
system modeling.

In UAV application scenarios, it is challenging for a single modeling approach to
simultaneously achieve high computational efficiency and predictive accuracy. Hybrid
modeling improves the stability and responsiveness of flight state awareness by combining
the real-time capabilities of mathematical models with the pattern recognition strengths of
data-driven models. For example, in urban logistics drones, integrating heat conduction
equations with long short-term memory networks enables the early warning of thermal
runaway risks. In fixed-wing UAVs that are used for emergency rescue missions, incorpo-
rating physical priors with transformer networks enhances the robustness of remaining
useful life predictions during high-altitude, long-endurance flights. Moreover, hybrid
modeling supports lightweight deployment on edge computing platforms, meeting the
dual requirements of real-time performance and safety in embedded battery management
systems. This provides critical support for high-reliability flight missions.

3.3.1. Series Hybrid Modeling

Series hybrid modeling establishes a sequential connection between physics-based and
data-driven models, with the core concept of this method being employing these models
in a “pre-processing–post-learning” or “coarse prediction–fine correction” framework.
Typically, the physics-based model is positioned at the front end of the system and is
responsible for preliminary feature extraction or intermediate variable estimation, while
the data-driven model serves as a subsequent module to compensate for errors, refine
predictions, or enhance accuracy. This approach preserves the strong interpretability of
physics-based models while leveraging the powerful fitting capabilities of data-driven
models to improve their prediction accuracy, which makes it particularly suitable for
complex system scenarios with incomplete information or features that are difficult to
extract directly.

In practical applications, series hybrid modeling is commonly used for state estimation
in UAV battery systems. For state-of-charge estimation, researchers often first employ
an equivalent circuit model to model the battery’s voltage–current response, generating
an initial SOC estimate. However, ECMs are highly condition-dependent and prone to
deviations under dynamic loads. To address this, deep learning models, such as long short-
term memory networks, can be introduced to model the error sequence between the initial
estimate and the true value, dynamically correcting the prediction. Similarly, state-of-health
estimation can adopt this structure, using electrochemical impedance characteristics or
equivalent parameters to provide physical priors for neural networks and thereby enhance
their generalization and interpretability.

Beyond correcting target variables, series hybrid modeling can also improve the per-
formance of data-driven models through feature enhancement. Specifically, physics-based
models can extract intermediate variables with clear physical significance—such as voltage
slopes, time constants, open-circuit voltage, polarization voltage, or thermal resistance-
capacitance—from raw sensor data. These variables offer higher information density and
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stability, effectively reducing the data-driven model’s reliance on large-scale training data
and mitigating overfitting. In battery thermal management modeling, one-dimensional or
three-dimensional heat conduction models are often used to estimate temperature trends,
with their outputs serving as features for machine learning models to further identify
potential thermal runaway precursors [70].

Compared to parallel or embedded hybrid models, the primary advantage of the
series structure lies in its relative simplicity, clear architecture, and modular design, which
facilitate the system’s deployment and phased training. The distinct boundary between the
physics-based and data-driven models allows independent design and optimization, which
are connected through standard interfaces, which is particularly valuable for engineering
implementation. Additionally, the series structure offers fault tolerance; even if the physics-
based model is imperfect, the data-driven model can compensate at the back end, enhancing
the overall system robustness.

However, series hybrid modeling has certain limitations. Due to its shallow coupling
depth, the data-driven model typically cannot directly intervene in the physics-based mod-
eling process, which limits dynamic feedback and the optimization of internal system states.
Furthermore, this approach remains dependent on the accuracy of the front-end physics-
based model. If the physics-based model produces systematic biases or fails to adequately
reflect changes in boundary conditions, the back-end data-driven model may struggle
to achieve effective corrections. Additionally, the misalignment of training objectives be-
tween the physics-based and data-driven models can impact overall their performance,
necessitating the careful design of joint optimization mechanisms in practical applications.

Overall, series hybrid modeling is a highly adaptable and easily implementable strat-
egy, and is particularly suited for typical battery system modeling scenarios characterized
by “insufficient data but known physics” or “imperfect physics with available priors.” By
rationally delineating the functional boundaries between physics-based and data-driven
models and designing efficient interfaces and error feedback mechanisms, this approach
demonstrates broad application prospects in improving modeling accuracy, reducing train-
ing complexity, and enhancing model interpretability. With the advancement of the Internet
of Things, big data, and edge computing, series hybrid modeling will further drive the
intelligent upgrading of state awareness and management in energy storage systems across
a wider range of applications.

3.3.2. Parallel Hybrid Modeling

Parallel hybrid modeling is a strategy that operates physics-based and data-driven
models concurrently, with each producing independent outputs. The core concept in-
volves both models independently predicting the same target variable, such as the battery
SOC, SOH, or RUL, with their outputs subsequently being integrated through a fusion
mechanism to generate the final prediction. This structure emphasizes redundancy and
complementarity between models, leveraging the relative strengths of each under vary-
ing operating conditions to enhance the overall robustness, adaptability, and accuracy of
the system.

In battery system modeling, parallel hybrid modeling is widely applied to state estima-
tion and lifespan prediction tasks [71]. Specifically, the physics-based model, constructed
using first-order or higher-order equivalent circuits, heat conduction equations, or electro-
chemical mechanisms, effectively characterizes the mid-to-low-frequency or steady-state
performance of the battery system. In contrast, the data-driven model, utilizing algorithms
such as neural networks, random forests, or support vector machines, learns dynamic
nonlinear features embedded in large datasets, compensating for the limitations of physics-
based models under non-standard conditions or degradation states. The complementary
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nature of their structures, input variables, and response speeds ensures that the fused
prediction results are typically more accurate and reliable than those from a single model.

A common fusion strategy in parallel hybrid modeling is weighted linear combina-
tion, where the final output is a weighted average of the physics-based and data-driven
model results:

ŷ = α · yp + (1 − α) · yd (10)

where α ∈ [0, 1] represents the fusion weight. This weight can be fixed or dynamically ad-
justed, for instance, based on current model errors, confidence levels, or external operating
condition metrics such as the temperature or current amplitude. In certain applications,
Bayesian methods are employed, with model outputs being treated as likelihood func-
tions for fusion, which is a more effective method of handling uncertainty. In practical
deployment, a well-designed fusion mechanism significantly enhances the model’s gener-
alization across diverse scenarios, particularly in boundary conditions, complex tasks, and
multimodal input contexts.

Moreover, the parallel structure naturally lends itself to extensions of ensemble learn-
ing principles. For example, multiple data-driven models can be constructed and fused
with the physics-based model to form a more robust ensemble prediction framework. This
structure also facilitates integration with fault-tolerance mechanisms: if one model fails due
to sensor malfunctions or anomalous data, the system can rely on the remaining models
to maintain functionality, which thereby improves the system’s safety and robustness.
In UAV battery management systems, particularly for SOC estimation and rapid RUL
assessment, parallel hybrid models have been widely adopted, demonstrating superior
real-time performance and stability in dynamic scenarios.

However, parallel hybrid modeling presents certain challenges. First, the outputs of
physics-based and data-driven models often differ in their physical significance, numerical
scale, and temporal response characteristics, which necessitates normalization and time
synchronization during fusion. Second, discrepancies or mutual interference between
models may lead to cumulative biases, and improperly set fusion weights could result
in combined outputs that underperform in comparison to those of individual models.
Thus, designing a scientifically sound fusion mechanism that ensures complementary
model strengths, rather than mutual degradation, is critical to the success of the parallel
structure. Recent studies have introduced methods such as reinforcement learning and
adaptive filtering to dynamically adjust fusion strategies, addressing temporal variations
and uncertainties in models’ performance.

From an engineering perspective, parallel hybrid modeling offers high modularity
and scalability. Physics-based and data-driven models can be independently trained
and deployed, which facilitates their maintenance and iterative updates. Additionally,
the parallel structure aids in model interpretability: the physics-based model provides
deterministic causal explanations, while the data-driven model uncovers latent correlations
and trends, which enables a multilevel, multifaceted understanding of system states.

Overall, parallel hybrid modeling, as a strategy that balances robustness and flexibility,
is particularly well-suited for battery system modeling scenarios where high accuracy is
required, physical modeling is incomplete, and data features are complex yet not fully
comprehensive. With advancements in multisource sensor fusion, edge AI computing, and
digital twin systems, parallel hybrid modeling is poised to play an increasingly vital role in
intelligent energy systems.

3.3.3. Embedded Hybrid Modeling

Embedded hybrid modeling represents the most deeply integrated modeling ap-
proach, with its core principle being the direct incorporation of physical knowledge into the
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structural design, training objectives, or representational framework of data-driven models
to achieve precise system behavior modeling. This method seeks to transcend the tradi-
tional boundaries between physics-based and data-driven models, moving beyond merely
combining them as independent components. Instead, it employs coupling mechanisms
to endow models with both “physical consistency” and “data adaptability.” This deeply
fused approach provides a novel solution for complex system modeling, particularly in
scenarios that involve multi-physics coupling, strong nonlinearity, and high dynamism.

In battery system modeling, embedded hybrid modeling manifests primarily in three
forms: physical regularization, structural embedding, and physics-informed neural net-
work construction. The first and most common approach involves incorporating physical
laws as regularization terms in the loss function of data-driven models. For instance, when
predicting variables such as the SOC, SOH, or temperature, constraints like conservation
laws (e.g., charge or energy conservation), system stability conditions, or boundary condi-
tions can be added to ensure physical consistency. These constraints guide the model to
maintain reasonable physical behavior while optimizing its data-fitting accuracy, effectively
mitigating issues such as overfitting, unreasonable predictions, or poor generalization.

The second form is structural embedding, where prior physical model information is
integrated into the architectural design of neural networks. For example, the structure of
an equivalent circuit model can be directly embedded into a neural network, ensuring that
certain layers’ connections, activation functions, or output features carry explicit physical
meaning. A typical approach involves outputting RC parameters from the network while
constraining their value ranges to align with real battery response behaviors. Alterna-
tively, some studies embed discretized forms of heat conduction differential equations into
networks or use neural ordinary differential equation (ODE) frameworks to simulate the
temporal evolution of battery states. This method enhances models’ interpretability and
robustness, which has made it more readily accepted in industrial applications.

The third approach involves constructing neural networks based on physical dif-
ferential equations, which are commonly referred to as physics-informed neural net-
works (PINNs) [72]. PINNs use governing equations—such as heat conduction equations,
Fourier’s law, Newton’s law of cooling, or Poisson’s equation—as training objectives,
leveraging automatic differentiation to compute physical derivative terms. This enables
comprehensive learning of the system’s state space. In UAV battery modeling, PINNs
have been applied to predict temperature fields, electric field distributions, and aging
behaviors under varying flight conditions and charge–discharge rates. Notably, PINNs
demonstrate robust reconstruction and inference capabilities in scenarios with incomplete
boundary conditions or sparse sensor data, providing reliable support for flight safety and
battery management.

The primary advantage of embedded hybrid modeling lies in its ability to fully lever-
age existing physical knowledge, which enhances the credibility and constraint adherence
of data-driven models. Compared to series and parallel hybrid models, embedded ap-
proaches more closely align with the true behavior of physical systems, which makes them
particularly suitable for high-precision, safety-critical tasks such as thermal runaway predic-
tion, thermo-electro-mechanical coupled modeling, and degradation mechanism diagnosis.
Additionally, the transparent and physically consistent internal structure facilitates the
causal analysis and mechanistic interpretation of predictions.

However, embedded hybrid modeling faces significant challenges. On one hand, the
design and training processes are highly complex, requiring a deep integration of mathemat-
ical physics and deep learning expertise, and thus demanding interdisciplinary knowledge
from modelers. On the other hand, the inclusion of physical constraints may reduce models’
flexibility and fitting capacity. If the physical knowledge is inaccurate or overly simplified,



Drones 2025, 9, 539 30 of 59

it could inadvertently limit the performance of the data-driven model. Furthermore, the
difficulty of hyperparameter tuning and the elevated demands on computational resources
and optimization algorithms pose additional hurdles.

Overall, embedded hybrid modeling represents a cutting-edge direction in the fusion
of physical modeling and artificial intelligence. Its high-fidelity, strongly constrained,
and highly interpretable characteristics make it particularly well-suited for complex, high-
risk, and high-dimensional energy storage systems. With the development of emerging
technologies such as symbolic regression, graph neural networks, and neural differential
equations, the construction and optimization of embedded models will become increasingly
flexible and powerful. In the future, embedded hybrid modeling is poised to become a
cornerstone for intelligent battery management, digital twins, and adaptive control in
energy systems.

4. UAV Battery State Estimation and Fault Diagnosis Early Warning

4.1. State Estimation of UAV Batteries

As UAV batteries are the core component of unmanned aerial systems, their perfor-
mance directly affects UAVs’ flight endurance, safety, and task efficiency. State estimation
is a key task of the battery management system, covering the state of charge (SOC), state of
health (SOH), state of power (SOP), state of energy (SOE), and remaining useful life (RUL),
providing a basis for optimizing flight control, extending the battery life, and ensuring
safe operation.

The SOC reflects the current available capacity of the battery and is the core of real-time
flight management; the SOH quantifies the aging degree of the battery, guiding maintenance
and replacement decisions; the SOP describes the instantaneous power capability, ensuring
stability during highly dynamic flights; the SOE measures the remaining available energy,
allowing for the optimization of task planning; the RUL predicts the battery life, supporting
long-term operation.

Traditional state estimation relies on physical models, requiring accurate mechanism
descriptions and complex calculations, and exhibiting difficulty in adapting to the variable
working conditions of UAVs. In recent years, data-driven methods, including neural
networks, regression, optimization, and logic-based models, have become a research
hotspot due to their nonlinear fitting and generalization capabilities. These methods use
voltage, current, temperature, and other data to achieve high-precision estimation through
rule reasoning, probabilistic modeling, or optimization algorithms.

However, data-driven methods face challenges such as high data requirements and
a lack of interpretability. By explaining the applications of neural networks, regression,
optimization, and logic-based methods in SOC, SOH, SOP, SOE, and RUL estimation,
analyzing their advantages and limitations, and looking forward to hybrid modeling and
intelligent trends, this paper provides a reference for efficient battery management.

4.1.1. Introduction to State Parameters

The state of charge is one of the most widely used parameters for estimating battery
capacity. Estimating the battery SOC is a challenging process, as the chemical energy stored
in a battery is not readily accessible, and the presence of nonlinear parameters further
complicates the estimation [73]. The remaining stored energy in a battery represents its
SOC [74]. Periodically determining the SOC helps extend the battery life, improves control
strategies, and provides protection against overcharging and undercharging.

The SOC generally refers to the ratio of the remaining capacity Qremain to the total
available capacity Qall , indicating the current level of stored electrical energy in the battery.
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An SOC value of 0% indicates that the battery is fully discharged, whereas an SOC of 100%
indicates that the battery is fully charged.

SOC =
Qremain

Qall
(11)

The state of health (SOH) plays a critical role in assessing the performance of a bat-
tery over time and significantly influences the efficiency, cost, and reliability of associated
systems. Understanding the SOH helps predict battery degradation and optimize main-
tenance strategies, and thereby improves the reliability and cost-effectiveness in various
applications such as electric vehicles and renewable energy storage systems. Accurate SOH
estimation can also identify potential risks associated with battery aging and degradation,
and thereby contributes to improved safety.

The SOH is a subjective indicator that is affected by various factors, including the
temperature, current rate, and cutoff voltage. During charge and discharge cycles, the SOH
tends to decline gradually. Due to the diverse characteristics of power batteries, definitions
of SOH vary across countries and institutions, which has resulted in a lack of consensus
on its exact meaning. Currently, SOH estimation is primarily expressed in terms of factors
such as the capacity, energy, internal resistance, and remaining number of charge–discharge
cycles [75,76]. Although the SOH depends on these parameters, it is essentially defined
as a comparison between the health and performance of an aged battery and those of a
brand-new battery of the same type [77]. The SOH is typically determined by the ratio
of the battery’s current actual capacity Qc to its rated (nominal) capacity Qn, as shown in
Equation (12).

SOH =
Qc

Qn
(12)

Accurate estimation of the state of energy is crucial for the rational energy allocation
of lithium-ion battery energy storage systems. A precise and effective SOE estimation can
better address the issue of battery energy distribution and ensure the safe operation of the
battery. Compared with the SOC, the SOE provides a more accurate representation of the
battery’s state in terms of its remaining energy, shareable charge, and health. The SOE
cannot be directly measured; instead, it must be indirectly estimated using measurable
variables such as the voltage, current, and temperature [78]. The formula for the SOE is
given as follows:

SOE =
Eremaining

Enominal
× 100% (13)

where Eremaining represents the remaining energy of the battery and Enominal denotes the
nominal total energy. The remaining energy can be estimated by integrating the voltage,
current, and time.

Eremaining =
∫ t

t0
V(t) · I(t)dt + Einitial (14)

Here, V(t) represents the battery voltage, I(t) is the battery current (positive during
charging and negative during discharging), and Einitial denotes the initial energy.

The state of power is defined as the ratio of the peak power to the nominal power.
Under the constraints of the voltage, current, SOC, and power limits, the peak power
refers to the maximum power the battery can continuously deliver over a specific period of
time [79]. The SOP represents the maximum available power that can be drawn from or
delivered to the battery within a given future time frame.

In unmanned aerial systems, the SOP is a critical parameter in ensuring flight capabili-
ties such as takeoff, rapid speed changes, hovering, and executing high-load missions [80].
Any estimation error in the SOP may result in abnormal power distribution, which would
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negatively impact the flight performance and potentially cause mission failure. The SOP is
typically divided into maximum charging power and maximum discharging power, which
can be estimated using the following equations.

Pmax,d = Vmin · Imax,d (15)

Imax,d =
VOCV − Vmin

Rd
(16)

Pmax,c = Vmax · Imax,d (17)

Imax,c =
Vmax − VOCV

Rc
(18)

Here, Pmax,d denotes the maximum discharge power, Pmax,c represents the maximum
charge power, and VOCV is the open-circuit voltage.

As an internal state parameter, the SOP is influenced by a variety of factors. It is
constrained not only by design parameters such as the cut-off current, cut-off voltage, cut-
off SOC, and temperature, but also by battery characteristics such as the capacity, internal
resistance, and polarization parameters. For instance, as the battery undergoes aging, a
reduction in capacity or an increase in internal resistance will lead to a gradual decline in
the SOP [81].

The main challenges in SOP estimation arise from two aspects. First, battery oper-
ation is a highly nonlinear and dynamic process that is subject to multiple constraints.
Second, the key influencing parameters for SOP estimation—such as the SOC, capacity,
and resistance—are themselves subject to parameter uncertainties. Accurately estimating
these parameters is a complex task in itself. Therefore, compared to the SOC and SOH, the
research on SOP estimation remains relatively underdeveloped.

Accurate estimation of the remaining useful life (RUL) of lithium-ion batteries is
essential for the widespread deployment of these batteries as energy sources in unmanned
aerial vehicles. In general, the RUL of a battery is defined as the number of cycles at which
its capacity degrades to 80% of the initial value, which is known as the end of life (EOL) [82].
β denotes the cycle at the battery’s end of life, and α is the current cycle.

RUL = β − α (19)

In addition to improving battery efficiency, accurate lifetime prediction techniques can
significantly reduce the likelihood of unexpected failures. Determining the remaining useful
life of lithium-ion batteries is critical for maintaining their performance and enhancing
battery management systems. The RUL refers to the number of charge–discharge cycles
from the beginning of life to the end-of-life (EOL) of a battery under specific operating
conditions, with a typical degradation threshold being 20% capacity loss at EOL [83].

Several variables influence battery capacity degradation, including charge–discharge
profiles, the ambient temperature, the electrode materials, and the capacity regeneration
behavior. A fundamental understanding of the factors that affect the RUL is essential for
advancing battery technologies. However, accurately predicting the RUL remains a signifi-
cant challenge due to the complexity and nonlinearity of internal degradation mechanisms,
as well as the dynamic operating conditions encountered in real-world applications.

4.1.2. State Estimation Methods

Current research methods can generally be classified into four categories. The UAV
battery state estimation parameters and methods are shown in Figure 10:
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1. Battery characteristic-based methods: these include table look-up methods, the open-
circuit voltage method (OCV-SOC), and the ampere-hour integration method;

2. Model-based methods: These include electrochemical models, equivalent circuit mod-
els, electrochemical impedance spectroscopy models, and fractional-order models;

3. Data-driven methods: these include machine learning methods such as support vector
machines, artificial neural networks, fuzzy logic, and deep learning methods such as
genetic algorithms, particle swarm optimization, extended Kalman filter algorithms,
and unscented Kalman filter algorithms;

4. Hybrid methods: these include combinations of model-based and data-driven ap-
proaches, as well as data-driven and data-driven combinations, such as LSTM com-
bined with extended Kalman filtering, equivalent circuit models combined with ex-
treme learning machines, equivalent circuit models combined with Kalman filtering,
and simplified electrochemical models combined with deep learning.
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Figure 10. The UAV battery state estimation parameters and methods.

The lookup table method is simple, with fast computation speed, which makes it
suitable for real-time applications. By pre-measuring and recording the voltage–capacity
characteristic curve of the battery, the SOC can be estimated based on the current battery
voltage. However, its accuracy is limited and significantly influenced by factors such as the
battery’s lifespan and temperature. To ensure accuracy, frequent calibration and updating
of the lookup table are required, which poses a challenge for practical implementation [84].

Experimental methods include both direct measurement and indirect analysis ap-
proaches. Direct measurement involves techniques such as impedance, capacity testing,
internal resistance, and AC/DC testing, while indirect analysis includes methods such as
ICA, DVA, charging curves, and ultrasonic methods. The ampere-hour integration method
is based on the principle of integrating the current, which can accurately estimate the SOC
and is characterized by simplicity and efficiency. However, it suffers from integration errors
that accumulate over time. Accurate estimates require a long-term, stable charge–discharge
process. For short-term or unstable charging/discharging processes, the estimation accu-
racy is lower. This method is highly sensitive to initial values and often exhibits significant
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errors. It relies on electrochemical microcell models that describe the terminal behavior.
Additionally, it monitors internal physical factors, such as the temperature, potential, and
ion flow. However, balancing computational complexity and SOC prediction accuracy is
difficult for such models [85].

The open-circuit voltage (OCV) method is simple and easy to implement. The relation-
ship between the OCV and SOC is derived from extensive tests in controlled environments
(e.g., laboratories) to characterize battery’s behavior. While the OCV-SOC method is easy
to use and yields accurate results, although it requires a long settling time after each charge
or discharge to reach equilibrium, which makes it unsuitable for real-time estimation in
lithium-ion batteries.

Mechanism-based methods evaluate the SOH by considering the impact of various
factors during battery aging based on the battery’s chemical reaction mechanism. This
includes models such as RC equivalent circuit models [86], Thevenin equivalent circuit
models [87], and electrochemical models. State observers are designed based on these
models, where the SOH is treated as a state variable and health-related parameters are
iteratively identified to estimate it. This method is accurate, but the model-building process
is complex and involves numerous parameters. Despite maintaining high estimation
accuracy, such models suffer from sensitivity and vulnerability to disturbances, which
limits their application in real scenarios. Equivalent circuit models are typically combined
with Kalman filters (KF) to estimate the SOE [88,89]. For instance, Lai et al. [90] proposed
a novel SOE method using particle filters (PFs) and extended Kalman filters (EKFs) to
handle uncertain total usable energy loss and environmental temperature insensitivity,
achieving a maximum error of less than 3%. Although the use of ECM-based methods
improves the SOE estimation accuracy, the precision of the ECM model directly impacts
the estimation results, requiring substantial time for model construction. Neural network
models [91], which do not require ECM construction, exhibit strong generalization ability
across different battery types. The mainstream approach for estimating battery SOP is based
on the dynamic estimation of the SOP using equivalent circuit models, but electrochemical
models offer higher accuracy as they can comprehensively describe internal processes
and characteristics.

Battery SOC and SOE are two primary states that represent real-time battery status.
Various SOC and SOE estimation methods have emerged in recent years. In reference [92],
two independent H-infinity algorithms were used to estimate the SOC and SOE. The results
showed high accuracy under dynamic operating conditions, but the overall method is
highly complex, as the algorithm’s complexity is proportional to the computational load
of the battery management system (BMS). There remains a need to balance the accuracy
and complexity of combined SOC and SOE estimation methods. As discussed in [93], a
positive correlation exists between the SOC and SOE, with claims that this relationship
remains unaffected under dynamic working conditions. Leveraging this feature, a simpler
combined estimation method for the SOC and SOE was developed, in contrast to using
two separate estimation algorithms.

Electrochemical models use partial differential equations (PDEs) to describe physical
and chemical phenomena such as diffusion, electrochemical kinetics, and intercalation
occurring within the battery. Due to the coupled time-varying PDEs, these models are
computationally challenging. Common electrochemical models include one-dimensional
models [94], pseudo-two-dimensional models [95], quasi-three-dimensional full-order
physical models [96], and first-principles models [97]. To reduce the computational time,
a single-particle model has been proposed. Compared to electrochemical models, equiv-
alent circuit models achieve a better balance between model complexity and estimation
accuracy. While the second-order RC equivalent circuit model is widely used, it exhibits
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simulation distortion in high-SOC and low-SOC regions [98]. Considering the fractional
characteristics inherent in capacitors within equivalent circuits, fractional-order modeling
methods more accurately represent the dynamic characteristics of batteries. A physical
data fusion framework was proposed for accurate SOC estimation of lithium-ion batteries
which combines fractional-order Kalman filters (FOEKFs) with error models established
by long-short-term memory (LSTM) to improve the estimation accuracy by compensating
for errors [99]. Model-based SOC algorithms, such as extended Kalman filters (EKFs) and
unscented Kalman filters (UKFs), are common methods for SOC estimation. EKFs and
UKFs are based on equivalent circuits, where the parameter identification results directly
affect the prediction accuracy.

Data-driven models primarily include four categories: neural networks, regression,
optimization, and logic-based methods. For data-driven SOC and SOH estimation, large
amounts of battery test data are collected, and various data analysis methods, including
support vector machines (SVMs), neural networks (NNs), and particle filters (PFs), are
used to predict and estimate the SOH of lithium batteries. These methods do not require
the construction of complex battery equivalent models; however, the accuracy of SOC and
SOH estimation often depends on the depth and breadth of data collection [100].

Data-driven methods do not rely on specific battery models but instead utilize statisti-
cal techniques to establish the relationship between the battery input-output behavior and
SOC. These methods typically use large input-output datasets to train machine learning or
artificial neural network models. The trained models are then used to estimate the SOC
based on battery input signals (e.g., current, voltage, and temperature). Data-driven meth-
ods are flexible and adaptable to different battery chemistries and operating conditions. A
non-parameterized SOC simplification modeling and non-parameter estimation method
was proposed in [101]. Zhang et al. developed a kernel-based extreme learning machine
for SOC estimation [102]. However, these data-driven methods may require a substantial
amount of training data and may be sensitive to variations in operating conditions. While
deep learning models can effectively train nonlinear models using inputs and the SOC,
their estimation accuracy still needs improvement. In some cases, large discrepancies exist
between the estimated and actual values. To improve SOC estimation accuracy, train-
ing options for learning models were systematically compared, and an optimal model
was proposed by optimizing network parameters using GRU models for accurate SOC
estimation [103].

In reference [104], fuzzy entropy (FE) was proposed as a feature for SOH estimation.
FE is a powerful feature for accurately estimating the SOH of lithium-ion batteries indepen-
dently of aging conditions and battery chemistry. A SVM was used to establish an FE-SOH
mapping. The model’s high performance was validated under various calendar and cycle
aging conditions using LFP chemistry.

For the issue of SOH imbalance, a technique for lifespan extension balancing based
on the internal resistance, capacity, and SOC was proposed. The method uses equivalent
circuit models to represent internal chemical behaviors, and its accuracy depends on the
speed of parameterization. These methods exhibit nonlinearity during battery aging and
show limitations in their dynamic capability and adaptability when considering aging
and failure. A novel SOH module balancing algorithm was proposed using degradation
parameters which derives the SOH from the most effective health degradation parameters
based on the DOD and charging rate. A power-sharing control algorithm to achieve SOH
balance was also developed [105].

Zhang et al. [106] proposed a deep belief network (DBN)-based model, aiming for
differentiation and accuracy, using multi-objective genetic algorithms to construct an
ensemble model. However, due to the high sensitivity of deep learning to structural
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complexity, existing ensemble frameworks struggle to balance accuracy while maintaining
the independence of base models. For key diversity generation methods, researchers
tend to use a single disturbance scheme, which leads to insufficient model diversity and
redundancy and thus affects the enhancement of deep learning by ensemble learning.

To address these issues, a two-stage selective deep neural network ensemble-
based RUL prediction method was proposed [107]. Using high-dimensional, multi-
type battery status monitoring data as the input, hierarchical multi-method joint dis-
turbances were adopted to ensure the diversity of the candidate set during deep neural
network construction.

For hybrid methods, Xu et al. [108] proposed Coulomb counting and first-order RC
models to estimate the SOC of lithium-ion batteries. GAs were used to optimize battery
parameters, and the verification results showed that the proposed method could estimate
the online SOC using various driving cycles. Five different ECM parameters for SOC
estimation were optimized using classic GAs [109]. A GA was used for weight optimization,
with a single hidden layer BPNN and an output that was only for SOC. The Thevenin
ECM was used to calculate the OCV, and the decay KF was used to estimate the SOC. PSO
technology was used in [110] to determine unknown parameters in the second-order ECM
and to determine the OCV. SOC estimation was iteratively updated, and particle positions
were adjusted until the stopping conditions were met. PSO was also applied for optimal
parameter search, with a SVM being used for SOC estimation [111]. The results showed
faster convergence and better precision compared to traditional SVMs, with an error limit
of 1.3%. Other model-based approaches used in conjunction with data-driven models for
lithium battery SOC estimation include RBFNN and EKF. SOC estimation is accomplished
using EKFs, while RBFNN training is performed offline using a lithium battery dataset,
yielding an RMSE of less than 3%.

Although convolutional neural networks (CNNs) and long short-term memory models
(LSTMs) have been used for the RUL prediction of LIBs [112,113], previous evaluations
often faced overfitting issues due to small datasets. Some researchers have developed
models using expanded datasets and their parameters to improve generalization, further
enhancing these models by incorporating Bayesian optimization in the hyperparameter
tuning process to boost the performance of CNNs and LSTMs [114].

Following data-driven approaches, a convolutional and LSTM neural network with
attention mechanisms was proposed in [115]. Unlike the previous work, our focus is on
improving the accuracy of final lifecycle estimation by adopting data augmentation and
customized loss functions. This is crucial because accurate RUL estimation becomes more
critical as the end of life of the battery approaches, a concern that is often overlooked in
other works.

Battery status estimation for drones is crucial to ensuring their flight performance and
safety, and involves precise predictions of the SOC, SOH, SOP, SOE, and RUL. Neural net-
works excel in capturing complex nonlinear relationships, which makes them suitable for
dynamic conditions, but they require large amounts of data and have high computational
costs. Regression methods provide simple and efficient fitting with strong interpretabil-
ity but limited dynamic modeling ability. Optimization methods use global searching
to optimize parameters, fitting high-dimensional problems but facing challenges in pa-
rameter tuning and real-time performance. Logic-based methods excel in rule-based
reasoning, offering interpretability, but their flexibility is limited by the need for human
expert involvement.
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4.2. UAV Fault Diagnosis and Early Warning

The widespread use of unmanned aerial vehicles in fields such as aerial photography,
logistics, disaster monitoring, and defense has made them a pillar of modern technology. As
UAV batteries are the core power source of UAVs, their reliability is directly related to flight
safety and mission success. Battery failures, such as internal short circuits, thermal runaway,
or electrode degradation, can lead to a sudden reduction in flight time, system failure, or
even crashing. Therefore, fault diagnosis and early warning technologies, through real-time
monitoring, anomaly detection, and risk prediction, ensure the stable operation of UAVs.
This paper provides a comprehensive review of fault diagnosis and early warning methods
based on feature extraction, time-series modeling, and probabilistic reasoning in UAV
battery systems. It analyzes the technical advantages, limitations, and future trends of
these methods, offering insights for improving the reliability of UAV battery management.

UAV battery systems exhibit a range of fault modes, and the failure mechanisms are
typically very complex. From a control perspective, these fault modes can be categorized
into battery faults, sensor faults, and actuator faults. Battery faults include overcharging,
over-discharging, overheating, external short circuits (ESCs), internal short circuits (ISC),
electrolyte leakage, swelling, accelerated degradation, and thermal runaway (TR), which
are the most critical failures in UAV battery systems. These failures are often interrelated.
Overcharging and over-discharging can lead to various adverse side reactions in the
battery, accelerating its degradation. The gases generated during side reactions and thermal
runaway can eventually cause battery swelling. This swelling, along with mechanical
damage, can further lead to electrolyte leakage.

In addition to battery faults, sensor faults can also severely impact the operation
of UAV battery systems, as all feedback-based algorithms in the battery management
system (BMS) heavily rely on sensor measurements. Sensor faults in UAV battery systems
primarily involve voltage sensor faults, current sensor faults, and temperature sensor
faults. Current sensor faults can affect the estimation of battery state parameters and the
accuracy of multi-state estimation [116]. The estimated state parameters and temperature
measurements are used to update battery model parameters in real-time, which enables
high-precision predictions. Lithium-ion batteries must operate within safe voltage and
temperature ranges [117]. Exceeding these ranges can degrade batteries’ performance and
even cause accidents. Voltage and temperature sensor faults may also lead to balancing
errors and thermal management issues in the BMS.

Compared to battery and sensor faults, actuator faults have a more direct impact on the
control system’s performance. The literature [118] summarizes potential actuator faults in
battery systems, including terminal connector faults, cooling system faults, controller area
network bus faults, high-voltage contactor faults, and fuse faults. A cooling system failure
may prevent the battery from maintaining an appropriate operating temperature range,
which can potentially trigger thermal runaway. Battery connection faults not only result in
insufficient power supply but also increase the risk of accidents [119]. Poor connections
between battery cells can lead to increased resistance and result in excessive abnormal
heat generation and subsequent rises in temperature [120]. As the charge and discharge
processes continue, arcing or sparking may occur, causing battery terminals to melt.

Currently, the fault diagnosis of UAV battery systems still faces numerous challenges.
There is limited research on the fault diagnosis of UAV battery systems in the existing
literature. To provide a clear and systematic understanding of the current state of fault
diagnosis technologies for UAV battery systems, this paper comprehensively reviews the
fault mechanisms, fault features, and fault diagnosis technologies of lithium-ion batteries,
sensors, and actuators in UAV battery systems, as shown in Figure 11.
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Figure 11. UAV battery failure fishbone diagram.

4.2.1. Lithium-Ion Battery Fault Diagnosis

Fault diagnosis methods for batteries generally include model-based approaches,
data-driven approaches, knowledge-based approaches, and hybrid methods that integrate
multiple techniques.

The model-based approach relies on battery models and measurement data, using state
estimation and parameter estimation techniques to generate residuals for fault detection.
Fault isolation can be achieved by constructing fault feature tables. Due to its simplicity
and intuitiveness, the model-based approach is widely used for the fault diagnosis of both
individual battery cells and battery packs. Alavi et al. [121] used electromagnetism as a
foundation and applied the particle filter (PF) algorithm to estimate the lithium ion trans-
port rates in the positive and negative electrodes, then compared the estimated data with
boundary conditions to detect lithium plating. Since overcharging and over-discharging can
cause changes in model parameters, Sidhu et al. [122] utilized electrochemical impedance
spectroscopy theory to guide and improve equivalent circuit models. Based on the analysis
of impedance spectra in the high- and mid-frequency ranges as functions of the battery’s
state of charge and temperature, they proposed a variable-order equivalent model using the
Arrhenius equation and Bayesian information criterion. Additionally, the autoregressive
equations were employed to refine the state and observation equations of the variable-order
ECM. Song et al. [123] developed a fault diagnosis algorithm based on a lithium-ion battery
equivalent circuit model integrated within a neural network framework. This method
embeds the deterministic structural components directly into the ECM, while the uncertain
components are modeled by the neural network, which allows for leveraging the high
accuracy of the physical model alongside the powerful nonlinear processing capability of
neural networks to enhance fault diagnosis performance.

Li et al. [124] proposed a framework that combines electrical and thermal models, em-
ploying particle swarm optimization to identify optimal thermal model parameters using
real-time open-circuit voltage and terminal voltage data. The framework also integrates
an unscented Kalman filter estimator to predict the core temperature based on real-time
surface temperature measurements and diagnoses faults by analyzing the rate of change in
the estimated temperature. In reference [125], Yun et al. introduced a backstepping-based
fault localization filter that is capable of localizing faults without requiring full-state tem-
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perature measurements. The method ensures reliable thermal fault detection through FLF
design, distributed residual evaluation, and threshold computation. Furthermore, in [126],
they used a partial differential equation (PDE)-based model to detect and estimate the
magnitude of thermal faults.

Phenomenological models are also capable of capturing correlations due to overcharg-
ing and abnormal heating in ISC (internal short circuit) batteries, which affect their voltage
and temperature responses. Shrivastava et al. [127] employed a recursive least squares
method with a forgetting factor to estimate model parameters. Their model incorporates
parallel resistance, capacitance, ohmic resistance, and the temperature derivative of the
equilibrium potential within the energy conservation equation. Based on the variations
in these key parameters, internal short circuit (ISC) fault detection is performed. Yang
et al. [128] proposed an ISC detection method based on a transformation matrix and an
improved state-space model for ISC resistance calculation. By capturing the characteristic
voltage slope decline of ISC cells within the battery pack through shear elements in the
matrix and designing an online detection procedure that leverages the inverse variation
relationship of shear elements between adjacent cells, the method significantly enhances
the effectiveness and superiority of ISC detection.

The model-based approach combines the related information of adjacent cells in a
battery pack. Fault diagnosis can be achieved by analyzing the differences in state parame-
ters and model parameters between the faulty and healthy batteries. For example, Zhang
et al. [129] combined a physics-based observer with a bidirectional long short-term memory
neural network, enabling the observer to learn uncertainties and effectively distinguish
soft fault information from uncertainties within residuals. Moreover, by leveraging the
memory capabilities of the bidirectional long short-term memory neural network and
optimizing training data and input features, the robustness of the detection system was
significantly enhanced.

Data-driven approaches extract fundamental patterns from large datasets of battery
samples. However, due to the difficulty in obtaining large amounts of battery fault data,
these methods are currently less commonly applied in battery fault diagnosis. For example,
Chen et al. [130] proposed a hybrid neural network fault diagnosis model that integrates
a deep learning system with a convolutional neural network. The deep learning system
eliminates temporal features from raw current signals and captures more comprehensive
and representative sample features within a broad feature space. Subsequently, the CNN
is employed for feature extraction and classification tasks. This current-signal-based fault
diagnosis approach for UAV motors addresses the challenge of limited training samples
in fault data, overcoming the difficulty of traditional machine learning and deep learning
methods in identifying representative features from small datasets.

Cabahug et al. [131] developed a fast and accurate fault detection system utilizing the
unsupervised learning k-means clustering algorithm. The system was validated during
experimental flights of a UAV using an LED subsystem to visually represent the proposed
algorithm, and its effectiveness in rapidly and accurately detecting faults was demonstrated.
Kim et al. [132,133] proposed a distance-based outlier detection method and used Z-score
normalization preprocessing for battery fault diagnosis. They performed cluster analysis
on estimated capacity and resistance parameters to detect healthy, short-circuited, and
aging faulty batteries.

Knowledge-based fault diagnosis relies on understanding battery mechanisms and
long-term accumulated knowledge and experience. Xiong et al. [134] proposed a rule-
based method for detecting over-discharge in lithium-ion batteries. Temperature rise
and voltage drop during over-discharge were used to establish temperature and voltage
rules, and faults were detected and warned about using Boolean expressions. However,
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determining appropriate fixed or time-varying thresholds for the rules is challenging in
practical applications.

Guo et al. [135] proposed an uncertainty-aware LSTM-based fault detection method
for unmanned aerial vehicles. Initially, a prediction-based fault detection model was estab-
lished using LSTM, wherein time-series features that were indicative of model prediction
uncertainty were constructed on selected inputs to more accurately characterize dynamic
flight conditions. An adaptive threshold estimation space was then developed based on
an enhanced distribution-based conditional clustering approach to obtain fault detection
thresholds under various flight conditions, which were further smoothed to mitigate inter-
ference effects. Experimental results from simulations and real flight data demonstrated
that the proposed method achieves superior fault detection performance under dynamic
flight conditions through the incorporation of a fault detection model with progressively
adaptive thresholds. Huber et al. [136] proposed a method for classifying separator defects
in batteries using optical detection and integrated expert knowledge, machine learning,
and machine vision during the diagnostic process. This hybrid approach, which combines
multiple diagnostic technologies, typically offers high accuracy and robustness, although it
does so at the cost of increased computational complexity.

4.2.2. Sensor Fault Diagnosis

The sensor fault diagnosis methods used in unmanned aerial vehicle battery systems
can be classified into three types: sensor topology-based methods, model-based methods,
and fusion methods. Sensor topology-based methods primarily rely on the configuration of
the sensors and the redundancy of sensor functions, which makes them easy to implement.
Xia et al. [137] proposed a redundant voltage measurement topology for series battery
packs which replaces individual cell measurements with total voltage measurements and
employs matrix-based structural analysis to isolate faults in voltage sensors and individual
cells. Building upon this, Yang et al. [138] introduced a correlation coefficient method to
establish bidirectional redundancy relationships between sensors and connection resis-
tances, enabling the effective separation of voltage sensor faults, short-circuit faults, and
connection faults.

Kang et al. [139] proposed a multi-fault diagnostic scheme that combines voltage mea-
surement topology and correlation coefficient methods, where the correlation coefficient is
used to detect fault features. In this sensor topology, each unit and connecting resistor is
associated with two sensors, which thereby enables the isolation of voltage sensor faults,
short-circuit faults, and connection faults.

Model-based methods use sensor measurement data and prior information or con-
straints expressed by models to generate residuals. By analyzing and evaluating these
residuals, the degree, type, and location of faults can be determined. Typical battery
models used for sensor fault diagnosis include electrical models, equivalent circuit mod-
els, superimposed parameter thermal models, and dual-state superimposed parameter
thermal models.

Lombardi et al. [140] tested the electrical relationship between current and voltage
sensor measurements based on Kirchhoff’s laws to generate residuals, and implemented
fault detection and isolation (FDI) for voltage and current sensors using the residual sets
associated with each sensor and the battery pack structure. Zhang et al. [141] proposed
a systematic approach that applies structural analysis theory to detect and isolate faults
in voltage, current, and temperature sensors. Specifically, they identified the structurally
overdetermined parts of the system model, which was followed by analyzing the fault
detectability and isolability. Subsequently, diagnostic tests were developed by selecting
minimal overdetermined sets. Residuals were generated by examining analytical redun-
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dancy relations within each test. Structural analysis theory [142,143] can effectively reduce
the effort involved in selecting residual generators; however, such analyses are susceptible
to noise and model uncertainties.

Due to inaccurate initial values, unknown disturbances, and noise, the residuals
directly generated by the model’s constraint relations may contain errors. Observers and
filters can reduce the impact of these factors. Sensor fault diagnosis methods based on
various observers follow a similar process, as shown in Figure 12. These methods first
estimate the battery states based on the battery model and the measurements from current,
voltage, and temperature sensors. Then, by comparing the measured outputs with the
estimated outputs, residuals containing sensor fault information are generated. Finally,
sensor FDI is achieved through residual evaluation, and alarms and fault flags are set.
Mukherjee et al. [144] modeled current sensor faults as bias signals in the system input and
employed a proportional-integral observer (PIO) to achieve fault detection and estimation.
While this method is accurate and easy to implement, improper PIO parameter settings
may lead to instability in the diagnostic system.
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Figure 12. Observer-based sensor fault diagnosis.

Zhang et al. [145] proposed a novel fault diagnosis framework based on multiple
performance indices of closed-loop control systems, providing standards for quantification,
SAR residual normalization, and explicit mapping between thresholds and the desired
performance. By monitoring the length and direction of normalized residual vectors in
the SAR performance residual space, simultaneous fault detection and isolation can be
easily achieved. This method assumes that a subset of inputs and outputs is fault-free.
Under this assumption, the system’s forward and inverse models generate residuals, but
the minimum detectable fault magnitude is limited by observer errors. Shahzad et al. [146]
employed a sliding mode observer for sensor fault diagnosis and fault-tolerant control
by reconstructing sensor faults with the SMO, which are then fed to the control block
post-compensation. Simulation-based analyses were conducted by presenting results of
state/output estimation, estimation errors, fault reconstruction, estimated disturbances, and
fault-tolerant control performance. Vafamand et al. [147] proposed a model-based diagnosis
scheme using an adaptive extended Kalman filter to estimate the state of individual batteries
for detecting current or voltage sensor faults. The method shows robustness to inaccurate
initial values and noise; however, precise determination of the process noise covariance
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matrix in EKF remains challenging in practice. Tudoroiu et al. [148] implemented the FDI
of current and voltage sensors in series battery packs using AEKF, which adaptively tunes
process and measurement noise covariance matrices [149] and thereby exhibits improved
noise robustness.

Strategies that combine multiple model-based methods can compensate for the inher-
ent limitations of individual approaches. For example, diagnostic tests based on structural
analysis theory were constructed [150], and EKF-generated residuals were obtained for
each test. The generated residuals were further evaluated through statistical cumulative
sum tests to detect sensor faults. This fusion approach reduces the effort needed to find
suitable residual generators and enhances models’ robustness against noise and inaccurate
initial values, but it also increases the system complexity and computational cost.

4.2.3. Actuator Fault Diagnosis

Actuators with different functionalities exhibit diverse fault mechanisms and charac-
teristics. As such, there is no universal diagnostic method that is applicable to all actuator
faults. Two typical approaches for actuator fault diagnosis are model-based techniques
and signal processing methods. Model-based approaches can be directly applied to fault
diagnosis in cooling systems. In battery systems, the cooling subsystem—which includes
cooling fans and drive motors—serves to enhance heat dissipation. The effective heat
transfer coefficient is a parameter in thermal models and varies with the type of convection.
Therefore, faults in the cooling system can be considered as deviations in thermal model
parameters and can be detected using conventional model-based methods. Liu et al. [151]
implemented the fault detection and isolation (FDI) of cooling systems based on a block
thermal model using structural analysis theory. Fan et al. proposed a battery fault diagnosis
method that combines relative entropy with state estimation sliding windows, enabling
the rapid detection of SOC shifts caused by sudden connection anomalies. This approach
demonstrated strong adaptability and timeliness within UAV power systems [152]. Further-
more, by integrating the cumulative sum detection algorithm, the dynamic identification of
various short-circuit faults—including contact faults—was achieved, which is suitable for
health management under multiple actuator operating conditions.

In signal processing methods, Hu et al. employed variational mode decomposition
combined with Shannon entropy to construct a multiscale diagnostic model for current
signals, effectively identifying nonlinear disturbances due to poor connections and demon-
strating feasibility for real-time operation during UAV flights [153]. Zhang et al. introduced
a hybrid approach that fuses entropy measures with the local outlier factor for actuator
fault detection in highly dynamic UAV scenarios. Validation with onboard measured data
confirmed the model’s robustness under high-frequency vibration interference [154].

Meanwhile, advancements in information entropy have further promoted the de-
velopment of multi-source information fusion diagnostic strategies. Liu et al. compared
Shannon entropy and fuzzy entropy in terms of their sensitivity to voltage fluctuations
under real flight conditions, noting that fuzzy entropy offers superior performance in
handling non-stationary states and is thus more suitable for the health assessment of highly
dynamic platforms such as UAV actuators [155].

Moreover, Liu et al. proposed a multi-source information fusion model based on
structural analysis and Bayesian networks which can be extended to jointly model battery
voltage and actuator vibration data. This model enables the refined differentiation of con-
nection faults and intrinsic degradation within UAV systems, providing fault localization
and risk level assessment capabilities for UAV battery management systems [156].
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Currently, the challenges in fault diagnosis for UAV battery systems can be categorized
into two types: those related to the diagnostic target and those related to diagnostic or
control methods. Issues associated with the diagnostic target include the following:

1. Many battery fault mechanisms remain poorly understood, and there is no unified
consensus on fault mechanisms in the existing literature;

2. Standardized surrogate testing methods for battery faults have not yet been developed.
Destructive methods often suffer from poor controllability and reproducibility and
tend to trigger catastrophic faults instantaneously, which makes it difficult to simulate
fault incubation phases;

3. There is a lack of mature mathematical models that are capable of accurately describing
certain fault behaviors—e.g., the modeling of lithium dendrite growth remains a
significant challenge;

4. The relationship between external symptoms and internal mechanisms is often unclear.
Similar fault phenomena may arise from different causes, yet most existing studies
focus on single fault mechanisms without accounting for interactions among multiple
fault processes.

5. UAV Battery Management System Architecture and Balancing Strategies

The battery management system of unmanned aerial vehicles plays a critical role in
ensuring flight endurance, operational safety, and mission efficiency. It is responsible for
monitoring, protecting, and optimizing the battery’s performance. Due to the high dynamic
load, space constraints, and lightweight design requirements of UAVs, the architecture
and balancing strategies of the BMS directly affect the system’s reliability and the battery’s
lifespan. The design of a UAV BMSs must integrate state monitoring, fault diagnosis,
and optimal control, while balancing strategies are essential for mitigating inconsistencies
among individual cells to extend the overall battery life. Based on functional modules,
the UAV BMS architecture and balancing strategies can be categorized into three main
components: battery charging and control, battery balancing strategies, and battery energy
management strategies. Each of these components is reviewed with respect to their tech-
nical features, current applications, and development trends, which provides insights for
improving the performance of UAV battery management.

5.1. Battery Charging and Control

UAV batteries typically consist of multiple cells connected in series. However, varia-
tions caused by manufacturing, handling, or environmental factors may lead to inconsis-
tencies among individual cells, resulting in overcharging, over-discharging, and reduced
energy efficiency. Overcharging can cause battery degradation, thermal runaway, or even
explosions, whereas over-discharging significantly reduces the energy conversion efficiency,
compromising flight endurance. Therefore, managing the balance between charging and
discharging is crucial.

Currently, the endurance of most commercial electric UAVs is limited by their bat-
tery capacity, which generally does not exceed one hour [157]. To address this limitation,
battery replacement remains the most common charging approach, done either manually
or through automated operations enabled by BMS–ground station communication. Ad-
ditionally, wireless power transfer (WPT) has emerged as a promising alternative [158].
WPT transfers energy via electromagnetic induction or magnetic resonance, yet its practical
implementation faces technical challenges, such as high-precision landing and efficient
energy transfer between the UAV and the ground station. These operations typically rely
on real-time battery state information from the BMS, flight control system positioning, and
coordinated efforts of the ground station [159].
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The charging control strategies for BMSs can be broadly categorized into non-feedback,
feedback, and intelligent control techniques [160]. Non-feedback methods include con-
stant current (CC), constant voltage (CV), and constant current–constant voltage (CC-CV)
schemes. These techniques, when combined with fast-charging algorithms, can improve the
charging efficiency to some extent. However, their inability to respond to real-time battery
dynamics limits their adaptability under complex operating conditions. Feedback-based
techniques utilize battery models—such as equivalent circuit models or electrochemical
models—to estimate the battery state and optimize charging. By monitoring the voltage,
current, and temperature in real time, they dynamically adjust the charging profile to
enhance safety and efficiency. Intelligent techniques incorporate machine learning, fuzzy
logic, and big data analysis to adaptively optimize the charging process, which makes them
particularly well suited for scenarios with highly dynamic loads.

Despite the progress of these charging strategies in UAV BMSs, several challenges
remain. Non-feedback techniques are too simplistic to account for battery aging or extreme
environmental conditions. Feedback-based methods depend heavily on the model accuracy,
and complex electrochemical models may exceed the computational capacity of embedded
systems. Intelligent methods, while flexible, require extensive training data and may
increase the system’s complexity and cost. Therefore, future research should focus on hybrid
strategies that combine lightweight modeling with efficient algorithms to develop more
adaptive and computationally efficient charging techniques. Moreover, the advancement
and integration of WPT technologies with BMSs could further enhance UAVs’ endurance.
Through the comprehensive optimization of charging control and hardware design, UAV
BMSs are expected to achieve a better balance between safety and efficiency, laying a solid
foundation for long-endurance and high-reliability UAV applications.

5.2. Battery Balancing Strategies

In drone battery systems, discrepancies in the electrochemical characteristics among
individual cells—stemming from manufacturing variances, transportation conditions, and
environmental factors—can lead to imbalances during charging and discharging processes.
Such inconsistencies may result in overcharging or over-discharging, accelerating battery
degradation, inducing thermal runaway, and potentially causing fires or explosions. There-
fore, implementing effective battery balancing strategies is crucial for ensuring operational
safety and prolonging batteries’ lifespan.

Battery balancing techniques are primarily categorized into passive and active meth-
ods. Passive balancing employs shunt resistors to dissipate excess energy from higher
state-of-charge cells as heat and align them with lower SOC cells. While this approach
is straightforward and cost-effective [161], it is inherently inefficient due to energy loss
and is typically limited to the charging phase. Conversely, active balancing redistributes
energy from higher- to lower-SOC cells using components such as inductors, capacitors,
or transformers. This method enhances the energy efficiency and can operate during both
charging and discharging cycles; however, it involves more complex circuitry and higher
costs, which may constrain its widespread adoption in drone applications.

Balancing strategies can also be differentiated based on the parameters that they mon-
itor: into voltage-based, SOC-based, and capacity-based methods [162]. Voltage-based
balancing is simple to implement but may overlook internal cell disparities, potentially
leading to suboptimal balancing outcomes. SOC-based balancing offers more precise en-
ergy distribution by estimating each cell’s charge state in real-time. For instance, a study
proposed an SOC-based active balancing technique utilizing Internet of Things technolo-
gies [163], which resulted in a cost-effective and reliable battery management system for
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drones. Capacity-based balancing considers cell aging and degradation, which makes it
suitable for long-term applications, albeit with increased computational complexity.

To further enhance the balancing speed and accuracy of these systems, intelligent
algorithms such as genetic algorithms, fuzzy logic, and neural networks have been ex-
plored [164–167]. These methods dynamically adjust balancing parameters based on real-
time battery conditions, improving the system’s efficiency and adaptability. However, their
high computational demands pose challenges for integration into the resource-constrained
embedded systems typical of drones. Consequently, developing lightweight algorithms
that balance performance with resource consumption is essential.

Given the wide variability in UAV mission profiles, payload capacities, flight durations,
and power system architectures, the adaptability of battery balancing strategies has become
increasingly critical. Different types of UAVs exhibit diverse requirements for their energy
management, and a single balancing strategy is unlikely to achieve optimal performance
across all application scenarios. Therefore, it is necessary to formulate principled guidelines
for selecting appropriate strategies based on specific operational contexts.

For lightweight, consumer-grade UAVs with limited mission durations, passive balanc-
ing strategies remain the mainstream solution due to their low cost and simple circuitry. In
contrast, for industrial-grade UAVs that require extended flight times or perform frequent
missions, active balancing strategies offer superior performance in managing capacity
inconsistencies and mitigating cell aging, owing to their higher energy utilization efficiency
and dynamic adjustment capabilities. Moreover, for military or special-purpose UAV
platforms with stringent reliability demands, intelligent algorithm-driven active balanc-
ing schemes that combine state-of-charge and capacity considerations can provide robust
support throughout the mission lifecycle.

Therefore, future UAV battery management system designs should incorporate a stan-
dardized selection framework for balancing strategies that is tailored to platform-specific
features and task requirements. By introducing task-oriented evaluation metrics, this
framework can enable the comprehensive optimization of the cost, energy efficiency, and
safety and ultimately deliver customized and highly adaptive energy balancing solutions
for various UAV categories.

The future trajectory of drone battery balancing strategies is expected to focus on
multi-objective optimization and technological integration. Hybrid approaches that com-
bine active and passive balancing aim to strike a balance between efficiency and cost.
Composite methods that integrate SOC and capacity considerations can enhance reliability
over prolonged operations. Moreover, advancements in IoT and edge computing facilitate
real-time data acquisition and cloud-based collaborative control, offering more precise
balancing support. Designing application-specific integrated circuits (ASICs) tailored for
drones’ lightweight requirements will also be pivotal in achieving efficient and compact
balancing systems, thereby laying the groundwork for extended endurance and heightened
safety in drone operations.

5.3. Battery Energy Management Strategies

As previously mentioned, to fully exploit the advantages of various types of batteries,
the application of hybrid batteries in unmanned aerial vehicles has become a research
hotspot. A typical example is the combination of fuel cells and supercapacitors. The appro-
priate selection of energy management strategies can ensure that the output power meets
the demands of UAVs under different flight conditions, while simultaneously maximizing
the flight time and battery lifespan. Therefore, the study of energy management strategies
is at the core of hybrid battery development. The common energy management strate-
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gies can be categorized into three types: rule-based, optimization-based, and intelligent
algorithm-based approaches [168], as shown in Table 7.

Table 7. Summary of advantages and disadvantages of battery energy management strategies.

Method Advantage Disadvantage

Rule-based Easy to implement and available online
It is greatly affected by human factors and

faces uncertainty in the actual situation

Optimization-based
The prediction effect is good and the

constraints can be handled
The generalization ability is poor

Intelligent algorithm-based
It does not depend on the model and

has strong generalization ability

The design is not systematic, and the
fuzzy processing of information may

reduce the accuracy

Rule-based strategies operate by comparing control variables with predefined thresh-
olds to switch battery packs among different operating modes. This method is easy to
implement and suitable for online applications [169]; however, it is highly dependent on
manually set parameters and may encounter uncertainties in real-world scenarios [170]. In
references [171,172], the power and state of charge were used as control variables to design
rule-based strategies for hybrid fuel cell–lithium battery UAVs, and the simulation results
validated the effectiveness of these strategies. Nevertheless, the absence of actual flight ex-
periments makes it difficult to assess whether the strategies fulfill real-flight requirements,
which thereby limits further exploration of their endurance performance.

Model predictive control (MPC) has emerged as a popular optimization-based strategy.
Reference [173] proposed a two-layer fuzzy nonlinear MPC approach to simultaneously
manage energy distribution and flight trajectory in UAVs powered by solar cells, fuel cells,
and lithium batteries. Further, [174] introduced a hierarchical model in which the upper
layer optimizes flight paths based on economic cost and battery lifespan, while the lower
layer predicts the battery output power using a grey Markov chain. This model signifi-
cantly extended the flight endurance, reduced the energy consumption, and demonstrated
excellent robustness under complex flight conditions.

Among intelligent algorithms, fuzzy logic has found the widest application. FL
relies on predefined rules and employs fuzzy inference to offer more robust control than
deterministic rules. In reference [175], a comparison among online FL, passive control, and
state-machine strategies revealed that online FL effectively balances the use of fuel cells and
lithium batteries. Moreover, applied the particle swarm optimization algorithm to tune the
threshold values of FL membership functions, thereby improving the energy distribution
efficiency and reducing the hydrogen consumption of UAV batteries.

Despite notable progress in energy management strategies for hybrid battery UAVs,
several challenges remain. Rule-based strategies have advantages in real-time performance
due to their simplicity, but their limited adaptability to dynamic operating conditions
constrains their application in complex flight scenarios. MPC enhances the accuracy of
energy management through prediction and optimization, but its computational complexity
imposes high demands on the processing capabilities of UAV-embedded systems, especially
on resource-constrained lightweight platforms. Intelligent algorithms such as FL and PSO
offer excellent adaptability and robustness but rely heavily on high-quality training data
and rule design. Moreover, their real-time performance must be further optimized to meet
the dynamic requirements of UAV operations.

The development of hybrid battery energy management strategies is expected to
focus on multi-technology integration and real-time optimization. By combining the
simplicity of rule-based strategies with the predictive capabilities of optimization-based
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methods, lightweight control frameworks that are suitable for complex flight scenarios
can be constructed to enhanced the flexibility and efficiency of the energy allocation in
these systems. Meanwhile, intelligent algorithms such as reinforcement learning have
shown strong adaptability in dynamic environments, enabling real-time power allocation
optimization based on flight demands and thereby improving the endurance and reducing
the energy consumption of these systems. With the advancement of edge computing
and Internet of Things (IoT) technologies, real-time data acquisition and cloud-based
cooperative processing will greatly improve the accuracy and responsiveness of energy
management, providing stable support for UAVs under diverse operating conditions.
Furthermore, in response to the lightweight requirements of UAVs, low-power dedicated
hardware designs, such as high-efficiency energy management chips, will become a key
research focus. Through multi-source data fusion, algorithm optimization, and hardware-
software co-design, future energy management strategies are expected to achieve high
efficiency, intelligence, and reliability, which will lay a solid foundation for the widespread
application of long-endurance, high-performance hybrid-powered UAVs.

6. Conclusions and Future Perspectives

6.1. Core Contributions and Research Significance

This study addresses the reliability challenges of UAV battery systems by developing
a systematic and scalable analytical framework. It provides a comprehensive review
and integrated evaluation that covers multi-dimensional indicator systems, modeling
approaches, state estimation, fault diagnosis, and energy management strategies. By
introducing a six-dimensional reliability metric—performance–operation–safety–economy–
system–emerging Trends—this study proposes a quantitative assessment mechanism that is
suitable for complex flight missions, offering theoretical support for future standardization
and engineering applications. In terms of modeling, the research clarifies the applicable
boundaries of physical models, data-driven models, and hybrid approaches, enhancing the
adaptability of models to various flight scenarios. Furthermore, multi-modal fusion and
temporal modeling strategies are incorporated into state estimation and fault prediction,
which significantly improves the ability to perceive battery status and identify risks under
complex operating conditions. In addition, through a comparative analysis of passive
and active balancing strategies, this work provides a theoretical foundation and decision-
making reference for selecting management strategies in different types of UAV battery
management systems.

6.2. Limitations of the Current Study

Despite the systematic advances made in establishing a theoretical framework and
summarizing key technologies, this study still faces several limitations concerning engi-
neering feasibility and cross-platform deployment. First, although the proposed multi-
dimensional reliability metric system offers strong adaptability and scalability, practical
application in UAV missions is challenged by incomplete data acquisition, label scarcity,
and the high complexity of scenario modeling. Second, while the current state estimation
and fault diagnosis algorithms demonstrate high accuracy in experimental simulations,
they generally rely on large-scale, high-quality datasets and significant computational
resources, which limits their stable operation on resource-constrained embedded platforms
or real-time flight control systems. Moreover, although hybrid modeling methods offer
significant advantages in robustness and generalization, their engineering deployment
remains hindered by complex model structures, high parameter tuning costs, tight coupling
between algorithm modules, and a lack of standardized interfaces—factors that restrict
real-time deployment and online learning capabilities.
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Finally, most current mainstream BMS architectures remain at the distributed or
hierarchical passive management stage. As these systems evolve toward highly integrated,
intelligent, and networked architectures, they still lack unified communication protocols,
security authentication mechanisms, and remote coordination capabilities. These factors
collectively form major barriers in transitioning UAV battery systems from theoretical
research to practical engineering applications.

6.3. Future Research Challenges and Open Issues

Future research on UAV battery system reliability must overcome several key chal-
lenges: At the standards level, it is necessary to develop a cross-scenario, dynamically
evolving reliability evaluation framework that incorporates emerging dimensions such as
mission specificity, cybersecurity, and carbon emissions; in modeling, the stronger integra-
tion of multi-physics coupling and physics-informed neural networks is needed to enable
the edge deployment of high-accuracy, low-power prediction models; for complex flight
environments, adaptive state estimation algorithms under uncertainty should be advanced,
along with the exploration of causal diagnosis mechanisms for multi-fault coexistence; in
system integration, the evolution of BMSs toward highly integrated and intelligent archi-
tectures must be promoted, with the development of self-learning management systems
supporting dynamic control, cloud coordination, and remote maintenance. Particularly in
hybrid battery systems and multi-energy platforms, achieving optimal energy allocation
and coordinated scheduling will become a crucial research direction.

6.4. Potential Impact and Application Prospects

The theoretical framework and technical roadmap proposed in this study not only
provide valuable insights for enhancing the reliability of UAV battery systems but also
demonstrate transferable potential to other energy storage applications such as electric
aircrafts, mobile robots, and intelligent IoT nodes. Emphasizing multi-source data fusion,
hybrid modeling, and edge deployment methods, this research supports the develop-
ment of battery system architectures that are capable of high autonomy, task diversity,
and full lifecycle management. These capabilities will be critical for advancing the intel-
ligence, safety, and sustainability of unmanned systems. As the low-altitude economy,
green aviation, and urban air mobility sectors continue to evolve, this work lays a theo-
retical foundation and methodological pathway for constructing a future-oriented battery
reliability technology system.

Table 8 provides a comprehensive summary of the advantages and disadvantages
associated with the principal methodologies across each research domain covered in this
study. By systematically comparing modeling approaches, state estimation techniques,
fault diagnosis strategies, and energy management methods, the table highlights the re-
spective strengths—such as accuracy, adaptability, and real-time performance—and the
limitations—including computational cost, data dependency, and scalability constraints—
of these systems. This comparative analysis not only facilitates a clearer understanding
of methodological trade-offs but also serves as a practical reference for researchers and
engineers in selecting suitable approaches that are tailored to specific UAV battery sys-
tem applications.
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Table 8. Summary of advantages and disadvantages of main methods in each research area.

Research Area Main Methods Advantages Disadvantages

Reliability Modeling

Mathematical
Models

Electrochemical Models
(P2D, SP, Extended

SP) [30,34,36]

High accuracy, clear
physical mechanisms

Complex modeling, large
computational load,

requires detailed parameters

Equivalent Circuit Models
(RC, Thevenin,

PNGV, Improved
Thevenin) [40–42]

Simple modeling,
suitable for real-

time computation

Lower accuracy, parameters
prone to drift

Data-driven
Models

Neural Network-based
(ANN, RNN, LSTM, GRU,

CNN, AE, GAN,
Transformer) [43–50]

Powerful nonlinear
modeling ability, suitable
for time series and high-

dimensional features

Requires large train-
ing data, lack

of interpretability

Regression-based
(Linear Regression, Polyno-

mial Regression, SVR,
RFR, GBR, KAF) [51–56]

Fast modeling, high
accuracy, suitable for

small samples

Limited generalization
ability, sensitive to anomalies

Optimization-based
(PF, GA, PSO, DE, GWO,

DRL, Hybrid
Optimization) [57–63]

Useful for parameter tun-
ing, strong adaptability

Prone to local optima,
slow convergence

Logic-based
(Fuzzy Logic Control,

Decision Tree Classifica-
tion, HMM, Bayesian

Networks) [64–69]

Strong interpretability,
suitable for

uncertain problems

Rule setting depends on
experience, weak

generalization ability

Hybrid Models

Serial
(Mechanism model +

data-driven
correction) [70]

Combines advan-
tages of physi-

cal and data mod-
els, good robustness

Complex implementation,
requires balancing inputs

and outputs of both models

Parallel
(Fusion of mechanism and
data-driven outputs) [71]

More robust output,
high accuracy

Complex data
synchronization and

fusion method

Embedded
(Physical knowledge

embedded in data-driven
model) [72]

Improves generalization,
provides some

physical interpretability

Difficult to construct,
requires rich

prior knowledge

State Estimation

Based on Bat-
tery Characteris-

tic Analysis

Lookup Table, Open
Circuit Voltage, Coulomb
Counting Methods [110]

Simple and easy to
implement, suitable for

online estimation

Low accuracy, highly
affected by environment

Model-based
Methods

Electrochemical,
Equivalent Circuit, EIS,

Fractional-order
Models [31,41]

High accuracy, strong
interpretability

Complex modeling, high com-
putational burden, strong pa-

rameter dependency

Data-driven
Methods

Machine Learning
(SVM, ANN, FL);

Deep Learning
(GA, PSO, EKF,
UKF) [43–69]

High accuracy,
strong adaptability

Relies on historical data,
generalization ability needs

to be verified

Hybrid Methods

Mechanism Model +
Data-driven [70–72]

Combines physical
interpretability and data

adaptability, more
stable results

Complex model structure,
high construction cost

Data-driven +
Data-driven [70–72]

Leverages multi-
ple model advan-

tages for integration, im-
proved robustness

Fusion algorithm needs
rational design, risk

of overfitting
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Table 8. Cont.

Research Area Main Methods Advantages Disadvantages

Fault Diagnosis

Lithium-ion
Battery Fault

Diagnosis

Model-based
Methods [121–129]

Strong interpretability,
capable of accurately
identifying known
fault mechanisms

Complex modeling,
dependent on accurate

parameters and
prior knowledge

Data-driven
Methods [130–133]

Independent of physical
models, adaptable to
complex conditions

Requires large historical
data, difficult to interpret

causes of anomalies

Knowledge-based
Methods [134]

Can utilize expert
knowledge, suitable for

rule-based scenarios

Dependent on expert
experience, difficult to

handle novel faults

Integrated
Methods [135,136]

Multi-model fusion,
wide applicability,

high robustness

Complex systems, difficult
fusion strategy design

Sensor Fault
Diagnosis

Based on Sensor
Topology [137–139]

Detects correlations be-
tween sensors, suit-

able for redundant systems

Strong structural depen-
dence, high require-

ments on sensor layout

Model-based
Methods [140–149]

High accuracy, suitable
for quantitative diagnosis

High demand for model
accuracy and signal quality

Fusion Methods [150]

Multi-source
information fusion,

strong fault
detection capability

Complex construction,
fusion algorithm

requires optimization

Actuator Fault
Diagnosis

Model-based
Techniques [151,152]

Can identify common
actuator faults, suitable

for system-level analysis

Complex implementation,
requires system

modeling capabilities

Signal Processing
Techniques [153–156]

Capable of online
monitoring, strong

real-time data processing

Strongly affected by noise,
feature extraction depends

on algorithm design

Battery Management
System

Battery Charging
and Control

Non-feedback Type [160]
Simple to implement,

suitable for
fixed conditions

Lacks adaptability, prone to
overcharge or undercharge

Feedback Type [160]

Strong dynamic
adjustment capability,

adaptable to
load variation

Complex control strategies,
requires real-time sampling

Intelligent Type [160]

Predictive and
optimization capability,

enhances efficiency
and lifespan

High algorithm
complexity, depends on
high-quality data and

computational resources

Battery Balanc-
ing Strategy

Passive Balancing [161]
Simple circuit structure,

low cost, easy
to implement

Energy dissipated as heat,
low efficiency,

accelerates aging

Active Balancing [162]

Energy can be
transferred and reused,

high efficiency, prolongs
battery life

Complex circuits, high cost,
difficult control
strategy design

Energy
Management

Strategy

Rule-based [168,169]
Simple implementation,
fast execution, suitable
for clearly defined rules

Lacks flexibility, cannot
adapt to complex dynamic

environments

Optimization-
based [168,173]

Enables multi-objective
coordinated control,

high efficiency

Slow solving speed,
high requirement on
model accuracy and

computational resources

Intelligent Algorithm-
based [168,175]

Possesses learning and
adaptability, suited

for complex
dynamic systems

Training requires large data,
hard to guarantee optimality,

prone to overfitting
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BMS Battery Management System
UAS Unmanned Aerial Systems
SOC State of Charge
SOH State of Health
SOE State of Energy
SOP State of Power
RUL Remaining Useful Life
MTBF Mean Time Between Failures
EKF Extended Kalman Filter
P2D Pseudo-Two-Dimensional Model
SP Single Particle Model
ECM Equivalent Circuit Model
OCV Open Circuit Voltage
ANN Artificial Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
CNN Convolutional Neural Network
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AE Autoencoder
GAN Generative Adversarial Network
LR Linear Regression
PR Polynomial Regression
SVR Support Vector Regression
RFR Random Forest Regression
GBR Gradient Boosting Regression
KAF Kernel Adaptive Filtering
PF Particle Filtering
GA Particle Filtering
PSO Particle Swarm Optimization
DE Differential Evolution
GWO Grey Wolf Optimizer
DRL Deep Reinforcement Learning
FLC Fuzzy Logic Control
DTC Decision Tree Classification
HMM Hidden Markov Model
BN Bayesian Network
FNN Fuzzy Neural Network
DBN Dynamic Bayesian Network
OCV-SOC Open-Circuit Voltage-State of Charge
Ah Ampere-hour
EM Electrochemical Model
EIM Electrochemical Impedance Model
FOM Fractional Order Model
UKF Unscented Kalman Filter
FE Fuzzy Entropy
DOD Depth of Discharge
LIB Lithium-ion Battery
RBFNN Radial Basis Function Neural Network
RMSE Root Mean Square Error
MAE Mean Absolute Error
ESC External Short Circuit
ISC Internal Short Circuit
TR Thermal Runaway
PDE Partial Differential Equation
MSS Multi-level Screening Strategy
AEKF Adaptive Extended Kalman Filter
CC Constant Current
CV Constant Voltage
CC-CV Constant Current-Constant Voltage
MPC Model Predictive Control
PINN Physics-Informed Neural Network
EOL End of Life
DVA Dynamic Voltage Adjustment
KF Kalman Filter
FOEKF Fractional Order Extended Kalman Filter
ICAO International Civil Aviation Organization
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